In this study, an innovative strategy was proposed for the electrocatalytical reduction and enzymatic biosensing of hydrogen peroxide (H 2 O 2 ) using chronoamperometry technique. For the first time, immobilization of horseradish peroxidase (HRP) in polydopamine-modified magnetic nanoparticles (PDA-MNPs) was successfully performed. Also, poly(L-arginine/toluidine blue) film-modified glassy carbon electrode was constructed through co-electropolymerization of L-arginine and toluidine blue on the surface of GCE using cyclic voltammetry technique. The engineered hybrid thin film provides strong functionalities for efficient grafting of PDA-MNPs which, in turn, enable the covalent immobilization of HRP. The proposed biosensor was used for the detection of H 2 O 2 in the range of 0.5-30 μM with a low limit of quantification 0.23 μM. It also was successfully applied for the investigation of hydrogen peroxide in human plasma samples.
In this study, a selective and sensitive molecular imprinting-based electrochemical sensors, for horseradish peroxidase (HRP) entrapment was fabricated using electro polymerization of ß-Cyclodextrin (ß-CD) on the surface of glassy carbon electrode. Poly beta-cyclodextrin P(ß-CD) provide efficient surface area for self-immobilization of HRP as well as improve imprinting efficiency. The proposed imprinted biosensor successfully utilized for detection of HRP with excellent analytical results which linear range is 0.1 mg/mL to 10 ng/mL with LOD of 2.23 ng/mL. Furthermore, electrocatalytical activity of the prepared biosensor toward the reduction of hydrogen peroxide was investigated in the ranges of 1 to 15 μM with a detection limit of 0.4 μM by using chronoamperometry technique. The developed biosensor was used for the detection of hydrogen peroxide in unprocessed human plasma sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.