A longstanding goal in neuroscience has been to image membrane voltage across a population of individual neurons in an awake, behaving mammal. Here, we report a genetically encoded fluorescent voltage indicator, SomArchon, which exhibits millisecond response times and compatibility with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
A longstanding goal in neuroscience has been to image membrane voltage, with high temporal precision and sensitivity, in awake behaving mammals. Here, we report a genetically encoded voltage indicator, SomArchon, which exhibits millisecond response times and compatibility with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, and number of neurons observable, by manyfold over previous reagents. SomArchon only requires conventional one-photon microscopy to achieve these high performance characteristics. These improvements enable population analysis of neural activity, both at the subthreshold and spiking levels, in multiple brain regions -cortex, hippocampus, and striatum -of awake behaving mice. Using SomArchon, we detect both positive and negative responses of striatal neurons during movement, highlighting the power of voltage imaging to reveal bidirectional modulation. We also examine how the intracellular subthreshold theta oscillations of hippocampal neurons govern spike output, finding that nearby cells can exhibit highly correlated subthreshold activities, even as they generate highly divergent spiking patterns.
Summary
Fibronectin intrabodies generated with mRNA display (FingRs) are a recently developed tool for labeling excitatory or inhibitory synapses, with the benefit of not altering endogenous synaptic protein expression levels or synaptic transmission. Here, we generated a viral vector FingR toolbox that allows for multi-color, neuron-type-specific labeling of excitatory or inhibitory synapses in multiple brain regions. We screened various fluorophores, FingR fusion configurations, and transcriptional control regulations in adeno-associated virus (AAV) and retrovirus vector designs. We report the development of a red FingR variant and demonstrated dual labeling of excitatory and inhibitory synapses in the same cells. Furthermore, we developed cre-inducible FingR AAV variants and demonstrated their utility, finding that the density of inhibitory synapses in aspiny striatal cholinergic interneurons remained unchanged in response to dopamine depletion. Finally, we generated FingR retroviral vectors, which enabled us to track the development of excitatory and inhibitory synapses in hippocampal adult-born granule cells.
HIGHLIGHTSGenetic sensor Archon1 reports membrane voltage in hiPSC-derived cardiomyocytes Archon1 monitors action potentials in 2D and 3D cardiac tissue with high sensitivity Archon1 repeatedly monitored voltage in the same cells and over extended time periods Voltage dynamics of multiple cells were recorded simultaneously with Archon1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.