The natriuretic system consists of the atrial natriuretic peptide (ANP) and four other similar peptides including the wrongly named brain natriuretic peptide (BNP). Chemically they are small peptide hormones predominantly secreted by the cardiac myocytes in response to stretching forces. The peptide hormones have multiple renal, hemodynamic, and antiproliferative effects through three different kinds of natriuretic receptors. Clinical interest in these peptide hormones was initially stimulated by the use of these peptides as markers to differentiate cardiac versus noncardiac causes of breathlessness. Subsequently work has been done on using these peptides to prognosticate patients with acute and chronic heart failure and those with acute myocardial infraction. Synthetic forms of both atrial- and brain-natriuretic peptides have been studied and approved for use in acute heart failure with mixed results. This review focuses on the biochemistry and physiology of this fascinating hormone system and the clinical application of these hormones.
As our understanding of the underlying aetiology of hypertension is far from adequate, over 90% of patients with hypertension receive a diagnosis of essential hypertension. This non-specific diagnosis leads to suboptimal therapeutics and a major problem with non-compliance. Understanding the normal control of blood pressure (BP) is, hence, important for a better understanding of the disease.This review attempts to unravel the present understanding of BP control. The local mechanisms of BP control, the neural mechanisms, renal-endocrine mechanisms, and a variety of other hormones that have a bearing in normal BP control are discussed and the possible role in the pathophysiology is alluded to.
Coronary artery disease (CAD) is the leading cause of morbidity and mortality in patients with diabetes. CAD is often asymptomatic in these patients, until the onset of myocardial infarction or sudden cardiac death. Consequently, proper screening and diagnosis of CAD is crucial for the prevention and early treatment of coronary events. This review deals with selection of the sub group of patients who have type 2 diabetes, who are at high risk for developing CAD and need to be screened for the same. The various diagnostic modalities which can be used in the screening process for enhancing risk stratification and management are also discussed.
Hypoglycemia is a very common side effect of insulin therapy and, to a lesser extent, of treatment with oral hypoglycemic agents. Severe hypoglycemia can precipitate adverse cardiovascular outcomes such as myocardial ischemia and cardiac arrhythmia. These are mainly secondary to autonomic activation which results in hemodynamic changes, vasoconstriction and rise in intravascular coagulability and viscosity.
Dyslipidemia and its consequences are emerging as epidemics with deleterious consequences on cardiovascular (CV) health. The beneficial effects of omega-3-fatty acids on cardiac and extra cardiac organs have been extensively studied in the last two decades, and continue to show great promise in the primary and secondary prevention of cardiovascular diseases (CVDs). Omega-3-fatty acid supplementation has been proven to have beneficial action on lipid profile, cytokine cascade, oxidant-anti-oxidant balance, parasympathetic and sympathetic tone and nitric oxide synthesis. This review summarizes the current knowledge on the basis of its cardiac and non-cardiac benefits, present results from clinical trials and the recommendations for its use in cardiac diseases and dyslipidemias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.