Due to their sensitivity and dramatic declines, freshwater mussels are prime targets for conservation and environmental monitoring. For this, however, information is needed on life history and ecological traits, which is lacking in many taxa, including threatened species. Species recently described or recognized as valid are of particular concern, due to the shortage of even basic knowledge. A case in point is the recently recognized and Near Threatened dolphin freshwater mussel Unio delphinus Spengler, 1793, which is endemic to the western Iberian Peninsula and has suffered marked population declines. To overcome information gaps for U. delphinus, we carried out a holistic biological study across the species range, aiming to: i) estimate the area of occupancy (AOO) and extent of occurrence (EOO) based on updated distribution data taken from the literature and recent surveys; ii) estimate growth patterns from biometrical (shell dimensions and growth annuli) measurements taken on specimens from seven populations; iii) estimate sex ratios from gonad tissue biopsies collected on specimens from eight populations; iv) estimate gametogenesis and sex ratio through histological examination of gonad and gill tissues collected monthly for a year, from a single population; and v) determine host species from infestation trials of glochidia with co-occurring fish species. We estimated an EOO of 706 km 2 and an AOO of 61 km 2 , which together with data on declines assigns the species to the Endangered category using IUCN criteria. Unio delphinus was found to grow faster and to be shorter-lived (up to 11 years, maturity at around 2 years old) than other European freshwater mussels. Growth and life span are similar across the range in lotic habitats, but different from that in lentic habitats. The larvae of U. delphinus may attach to most co-occurring fish species, but only native species were effective hosts. Native cyprinids, especially those from the genus Squalius, seem to be the primary hosts. Overall, the information provided contributes to a better conservation status assessment, selection of conservation and rehabilitation areas, guidance for the establishment of propagation programs and better timing for specimens' manipulation including monitoring and possible translocations. The framework presented here highlights the importance of basic biological studies to define good ecological and physiological status.
The process of Chemistry teach-learning is being object of concern to educators of the area since a long time. This concern has stimulated a search for improvements in the quality of education, what it evidences the number of projects that aim expressive changes in the pedagogical practices. In this direction, the approach of chemical contents with the subject “Phosphate Fertilizers” had as objective show for the students the other side of Chemistry, with intention to promote a differentiated education, arousing in the student the curiosity and motivation. The development of the project was through of a mini course, with six meeting of 4 hours each one, where has been presented to the students expositive and experimental classes, through the use of differentiated pedagogical techniques, how talks, visits techniques, pedagogical games among others. During the meetings, was possible to realize that the students feel more motivated and enthusiastic when the teacher promotes differentiated activities, these feelings are essentials for a significant learning. So, it was possible to conclude that the use of the subject created in the students an ampler vision of Chemistry that involves the soil and other important points that allowed the growth of the students as citizen.
The present work proposes to analyse the results obtained under in vitro conditions where cellulose artificial membranes were incubated with biological fluids from the freshwater bivalve Anodonta cygnea. The membranes were mounted between two half 'Ussing chambers' with different composition solutions in order to simulate epithelial surfaces separating organic fluid compartments. The membrane surfaces were submitted to two synthetic calcium and phosphate solutions on opposite sides, at pH 6.0, 7.0 or 9.0 during a period of 6 hours. Additional assays were accomplished mixing these solutions with haemolymph or extrapallial fluid from A. cygnea, only on the calcium side. A selective ion movement, mainly dependent on the membrane pore size and/ or cationic affinity, occurred with higher permeability for calcium ions to the opposite phosphate chamber supported by calcium diffusion forces across the cellulose membrane. In general, this promoted a more intense mineral precipitation on the phosphate membrane surface. A strong deposition of calcium phosphate mineral was observed at pH 9.0 as a primary layer with a homogeneous microstructure, being totally absent at pH 6.0. The membrane showed an additional crystal phase at pH 7.0 exhibiting a very particular hexagonal or cuttlebone shape, mainly on the phosphate surface. When organic fluids of A. cygnea were included, these crystal forms presented a high tendency to aggregate under rosaceous shapes, also predominantly in the phosphate side. The cellulose membrane was permeable to small organic molecules that diffused from the calcium towards the phosphate side. In the calcium side, very few similar crystals were observed. The presence of organic matrix from A. cygnea fluids induced a preliminary apatite-brushite crystal polymorphism. So, the present results suggest that cellulose membranes can be used as surrogates of biological epithelia with preferential ionic diffusion from the calcium to the phosphate side where the main mineral precipitation events occurred. Additionally, the organic fluids from freshwater bivalves should be also thoroughly researched in the applied biomedical field, as mineral nucleators and crystal modulators on biosynthetic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.