Because cytokines are important mediators of immune function, the alteration of cytokine production by 17 beta-estradiol may thus have a profound effect on the outcome of immune response during inflammation.
BackgroundFemale mice and rats injected with estrogen perinatally become anovulatory and develop follicular cysts. The current consensus is that this adverse response to estrogen involves the hypothalamus and occurs because of an estrogen-induced alteration in the GnRH delivery system. Whether or not this is true has yet to be firmly established. The present study examined an alternate possibility in which anovulation and cyst development occurs through an estrogen-induced disruption in the immune system, achieved through the intermediation of the thymus gland.Methods, Results and ConclusionA putative role for the thymus in estrogen-induced anovulation and follicular cyst formation (a model of PCOS) was examined in female mice by removing the gland prior to estrogen injection. Whereas all intact, female mice injected with 20 ug estrogen at 5–7 days of age had ovaries with follicular cysts, no cysts were observed in animals in which thymectomy at 3 days of age preceded estrogen injection. In fact, after restoring immune function by thymocyte replacement, the majority of thymectomized, estrogen-injected mice had ovaries with corpora lutea. Thus, when estrogen is unable to act on the thymus, ovulation occurs and follicular cysts do not develop. This implicates the thymus in the cysts' genesis and discounts the role of the hypothalamus. Subsequent research established that the disease is transferable by lymphocyte infusion. Transfer took place between 100-day-old estrogen-injected and 15-day-old naïve mice only when recipients were thymectomized at 3 days of age. Thus, a prerequisite for cyst formation is the absence of regulatory T cells. Their absence in donor mice was judged to be the result of an estrogen-induced increase in the thymus' vascular permeability, causing de facto circumvention of the final stages of regulatory T cell development. The human thymus has a similar vulnerability to steroid action during the fetal stage. We propose that in utero exposure to excessive levels of steroids such as estrogen has a long-term effect on the ability of the thymus to produce regulatory T cells. In female offspring this can lead to PCOS.
Macrophages were present in the mouse ovary over the course of the estrous cycle. The greatest numbers of macrophages appearing in corpora lutea and in atretic follicles suggest a role for macrophages in corpus luteum differentiation and follicular atresia. Their patterns of distribution at proestrus and metestrus within microenvironmental compartments suggests a functional correlation with the events of ovarian development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.