Amino acids are considered to be regulators of metabolism in several species, and increasing importance has been accorded to the role of amino acids as signalling molecules regulating protein synthesis through the activation of the TOR transduction pathway. Using rainbow trout hepatocytes, we examined the ability of amino acids to regulate hepatic metabolism-related gene expression either alone or together with insulin, and the possible involvement of TOR. We demonstrated that amino acids alone regulate expression of several genes, including glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, pyruvate kinase, 6-phospho-fructo-1-kinase and serine dehydratase, through an unknown molecular pathway that is independent of TOR activation. When insulin and amino acids were added together, a different pattern of regulation was observed that depended upon activation of the TOR pathway. This pattern included a dramatic up-regulation of lipogenic (fatty acid synthase, ATP-citrate lyase and sterol responsive element binding protein 1) and glycolytic (glucokinase, 6-phospho-fructo-1-kinase and pyruvate kinase) genes in a TOR-dependent manner. Regarding gluconeogenesis genes, only glucose-6-phosphatase was inhibited in a TOR-dependent manner by combination of insulin and amino acids and not by amino acids alone. This study is the first to demonstrate an important role of amino acids in combination with insulin in the molecular regulation of hepatic metabolism.
SUMMARYPrevious studies in two rainbow trout lines divergently selected for lean (L) or fat (F) muscle suggested that they differ in their ability to metabolise glucose. In this context, we investigated whether genetic selection for high muscle fat content led to a better capacity to metabolise dietary carbohydrates. Juvenile trout from the two lines were fed diets with or without gelatinised starch (17.1%) for 10weeks, after which blood, liver, muscle and adipose tissues were sampled. Growth rate, feed efficiency and protein utilisation were lower in the F line than in the L line. In both lines, intake of carbohydrates was associated with a moderate postprandial hyperglycaemia, a protein sparing effect, an enhancement of nutrient (TOR-S6) signalling cascade and a decrease of energy-sensing enzyme (AMPK). Gene expression of hepatic glycolytic enzymes was higher in the F line fed carbohydrates compared with the L line, but concurrently transcripts for the gluconeogenic enzymes was also higher in the F line, possibly impairing glucose homeostasis. However, the F line showed a higher gene expression of hepatic enzymes involved in lipogenesis and fatty acid bioconversion, in particular with an increased dietary carbohydrate intake. Enhanced lipogenic potential coupled with higher liver glycogen content in the F line suggests better glucose storage ability than the L line. Overall, the present study demonstrates the changes in hepatic intermediary metabolism resulting from genetic selection for high muscle fat content and dietary carbohydrate intake without, however, any interaction for an improved growth or glucose utilisation in the peripheral tissues.
In mammals, feeding promotes protein accretion in skeletal muscle through a stimulation of the insulin- and amino acid- sensitive mammalian target of rapamycin (mTOR) signaling pathway, leading to the induction of mRNA translation. The purpose of the present study was to characterize both in vivo and in vitro the activation of several major kinases involved in the mTOR pathway in the muscle of the carnivorous rainbow trout. Our results showed that meal feeding enhanced the phosphorylation of the target of rapamycin (TOR), PKB, p70 S6 kinase, and eIF4E-binding protein-1, suggesting that the mechanisms involved in the regulation of mRNA translation are well conserved between lower and higher vertebrates. Our in vitro studies on primary culture of trout muscle cells indicate that insulin and amino acids regulate TOR signaling and thus may be involved in meal feeding effect in this species as in mammals. In conclusion, we report here for the first time in a fish species, the existence and the nutritional regulation of several major kinases involved in the TOR pathway, opening a new area of research on the molecular bases of amino acid utilization in teleosts.
Most teleost fish are known to require high levels of dietary proteins. Such high-protein intake could have significant effects, particularly on insulin-regulated gene expression. We therefore analyzed the effects of an increase in the ratio of dietary carbohydrates/proteins on the refeeding activation of the Akt-target of rapamycin (TOR) signaling pathways in rainbow trout and the effects on the expression of several genes related to hepatic and muscle metabolism and known to be regulated by insulin, amino acids, and/or glucose. Fish were fed once one of three experimental diets containing high (H), medium (M), or low (L) protein (P) or carbohydrate (C) levels after 48 h of feed deprivation. Activation of the Akt/TOR signaling pathway by refeeding was severely impaired by decreasing the proteins-to-carbohydrates ratio. Similarly, postprandial regulation of several genes related to glucose (Glut4, glucose-6-phosphatase isoform 1), lipid (fatty acid synthase, ATP-citrate lyase, sterol responsive element binding protein, carnitine palmitoyltransferase 1, and 3-hydroxyacyl-CoA dehydrogenase), and amino acid metabolism (serine dehydratase and branched-chain α-keto acid dehydrogenase E2 subunit) only occurred when fish were fed the high-protein diet. On the other hand, diet composition had a low impact on the expression of genes related to muscle protein degradation. Interestingly, glucokinase was the only gene of those monitored whose expression was significantly upregulated by increased carbohydrate intake. In conclusion, this study demonstrated that macro-nutrient composition of the diet strongly affected the insulin/amino acids signaling pathway and expression pattern of genes related to metabolism.
Our objective was to analyse the hepatic transcriptomes of juvenile rainbow trout fed with a plantbased diet. We focused our analysis on the total replacement of fish meal (FM) and fish oil (FO) by a 100% plant-based diet (0% FM, 0% FO). We analysed the postprandial hepatic transcriptomes of rainbow trout fed the two diets 8 h after feeding. Six total hepatic RNAs from each dietary group were hybridised against a trout cDNA microarray (9K). After treatment of the data respecting the standard MIAME (Minimum Information About a Microarray Experiment) protocol, we found that 176 hepatic genes were differentially expressed between fish fed the two diets: 96 and 80 were over-expressed and under-expressed, respectively, in trout fed the plant-based diet. A large majority of differentially expressed genes were involved in metabolism (57%) and the others in cellular processes (21%) and transport (10%). Among the genes involved in metabolism (n = 86), 37% were associated with protein metabolism (proteolysis, amino acid catabolism), 21% with lipid metabolism (fatty acid biosynthesis, cholesterol biosynthesis), 30% with nucleic acid metabolism and 8% with glucose metabolism. Specifically, we found in rainbow trout fed the 100% plant diet an over-expression of genes involved in lipid biosynthesis (cholesterol metabolism and desaturation of polyunsaturated fatty acids) and an over-expression of a new metabolic actor, i.e., glycerol kinase which plays a key role at the interface of glucose-lipid metabolism. Overall, these data demonstrate that a number of intermediary metabolic effects occur in trout fed a totally plant-based diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.