Metasurfaces have attracted great attention due to their ability to manipulate the phase, amplitude, and polarization of light in a compact form. Tunable metasurfaces have been investigated recently through the integration with mechanically moving components and electrically tunable elements. Two interesting applications, in particular, are to vary the focal point of metalenses and to switch between holographic images. We present the recent progress on tunable metasurfaces focused on metalenses and metaholograms, including the basic working principles, advantages, and disadvantages of each working mechanism. We classify the tunable stimuli based on the light source and electrical bias, as well as others such as thermal and mechanical modulation. We conclude by summarizing the recent progress of metalenses and metaholograms, and providing our perspectives for the further development of tunable metasurfaces.
Structural coloration using metasurfaces has been steadily researched to overcome the limitations of conventional color printing using pigments by improving the resolution, lowering the toxicity, and increasing the durability. Many metasurfaces have been demonstrated for dynamic structural coloration to convert images at the visible spectrum. However, the previous works cannot reach near-zero scattering when colors are turned-off, preventing it from being cryptographic applications. Herein, we propose a completely on/off switchable structural coloration with polarization-sensitive metasurfaces, enabling full-colored images to be displayed and hidden through the control of the polarization of incident light. It is confirmed that the nanostructure exhibits the polarization-dependent magnetic field distributions, and near-zero scattering is realized when the polarization of incident light is perpendicular to the long axis of the nanofins. Also, the metasurfaces are made up of triple-nanofin structures whose lengths affect locations of resonance peaks, resulting in full-color spectrum coverages. With such advantages, a QR code image, a two-color object image, and an overlapped dual-portrait image are obtained with the metasurfaces. Such demonstrations will provide potential applications in the fields of high-security information encryption, security tag, multichannel imaging, and dynamic displays.
Structured light (SL)-based depth-sensing technology illuminates the objects with an array of dots, and backscattered light is monitored to extract three-dimensional information. Conventionally, diffractive optical elements have been used to form laser dot array, however, the field-of-view (FOV) and diffraction efficiency are limited due to their micron-scale pixel size. Here, we propose a metasurface-enhanced SL-based depth-sensing platform that scatters high-density ~10 K dot array over the 180° FOV by manipulating light at subwavelength-scale. As a proof-of-concept, we place face masks one on the beam axis and the other 50° apart from axis within distance of 1 m and estimate the depth information using a stereo matching algorithm. Furthermore, we demonstrate the replication of the metasurface using the nanoparticle-embedded-resin (nano-PER) imprinting method which enables high-throughput manufacturing of the metasurfaces on any arbitrary substrates. Such a full-space diffractive metasurface may afford ultra-compact depth perception platform for face recognition and automotive robot vision applications.
As technology advances, electrical devices such as smartphones have become more and more compact, leading to a demand for the continuous miniaturization of optical components. Metalenses, ultrathin flat optical elements composed of metasurfaces consisting of arrays of subwavelength optical antennas, provide a method of meeting those requirements. Moreover, metalenses have many other distinctive advantages including aberration correction, active tunability, and semi-transparency, compared to their conventional refractive and diffractive counterparts. Therefore, over the last decade, great effort has been focused on developing metalenses to investigate and broaden the capabilities of metalenses for integration into future applications. Here, we discuss recent progress on metalenses including their basic design principles and notable characteristics such as aberration correction, tunability, and multifunctionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.