5 mm-scale large FAPbI 3 single crystals and corresponding photoconductive properties are shown. The phase transition of FAPbI3 between the α-phase and δ-phase is studied. The carrier mobility is 4.4 cm(2) V(-1) s(-1) with a lifetime of 484 ns in the bulk of the single crystal. Finally, photodetectors based on single-crystal FAPbI3 are demonstrated.
Printable electronics present a new era of wearable electronic technologies. Detailed technologies consisting of novel ink semiconductor materials, flexible substrates, and unique processing methods can be integrated to create flexible sensors. To detect various stimuli of the human body, as well as specific environments, unique electronic devices formed by "ink-based semiconductors" onto flexible and/or stretchable substrates have become a major research trend in recent years. Materials such as inorganic, organic, and hybrid semiconductors with various structures (i.e., 1D, 2D and 3D) with printing capabilities have been considered for bio and medical applications. In this review, we report recent progress in materials and devices for future wearable sensor technologies.
The combination of hybrid perovskite and Cu(In,Ga)Se (CIGS) has the potential for realizing high-efficiency thin-film tandem solar cells because of the complementary tunable bandgaps and excellent photovoltaic properties of these materials. In tandem solar device architectures, the interconnecting layer plays a critical role in determining the overall cell performance, requiring both an effective electrical connection and high optical transparency. We used nanoscale interface engineering of the CIGS surface and a heavily doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) hole transport layer between the subcells that preserves open-circuit voltage and enhances both the fill factor and short-circuit current. A monolithic perovskite/CIGS tandem solar cell achieved a 22.43% efficiency, and unencapsulated devices under ambient conditions maintained 88% of their initial efficiency after 500 hours of aging under continuous 1-sun illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.