Generally, electron therapy is applied to tumors on or close to the skin surface. However, this causes a variety of skin-related side effects. To alleviate the risk of these side effects, clinical treatment uses skin dosimeters to verify the therapeutic dose. However, dosimeters suffer from poor accuracy, because their attachment sites are approximated with the help of naked eyes. Therefore, a dosimeter based on a flexible material that can adjust to the contours of the human body is required. In this study, the reproducibility, linearity, dose-rate dependence, and percentage depth ionization (PDI) of PbO and HgO film-based dosimeters are evaluated to explore their potential as large-scale flexible dosimeters. The results demonstrate that both dosimeters deliver impressive reproducibility (within 1.5%) and linearity (≥ 0.9990). The relative standard deviations of the dose-rate dependence of the PbO and HgO dosimeters were 0.94% and 1.16% at 6 MeV, respectively, and 1.08% and 1.25% at 9 MeV, respectively, with the PbO dosimeter outperforming the 1.1% of existing diodes. The PDI analysis of the PbO and HgO dosimeters returned values of 0.014 cm (–0.074 cm) and 0.051 cm (–0.016 cm), respectively at 6 MeV (9 MeV) compared to the thimble chamber and R50. Therefore, the maximum error of each dosimeter is within the allowable range of 0.1 cm. In short, the analysis reveals that the PbO dosimeter delivers a superior performance relative to its HgO counterpart and has strong potential for use as a surface dosimeter. Thus, flexible monoxide materials have the necessary qualities to be used for dosimeters that meet the requisite quality assurance standards and can satisfy a variety of radiation-related applications as flexible functional materials.
In the field of radiation therapy, the need for a flexible dosimeter that can be applied on the flexor surface for precise measurement of the surface dose is increasing. In particular, electron beam therapy has a shorter treatment depth than photon beam therapy; therefore, the surface dose must be measured accurately. This study investigates attenuation errors in a dosimeter. We demonstrated that the attenuation error depends on the thickness of the flexible functional materials, and it can serve as fundamental research for creating a flexible dosimeter that can be applied on the human body. The results indicated that the maximum attenuation error of a polyethylene terephthalate film with a thickness of 75 μm was 0.40% and 0.027% at 6 MeV and 9 MeV, respectively. Moreover, when using HgI2 and PbI2 as photoconductor materials, the maximum attenuation errors at 6 MeV were 1.35% and 1.67%, respectively. This study provides fundamental insights into dose errors by using a surface dosimeter and error variables to produce a surface dosimeter. Further, because the study investigates flexible materials, the findings can be extended to various applications in the field of radiation therapy.
Objective: This study analyzed the correlation between the average segment width (ASW) and gamma passing rate according to the multi-leaf collimator (MLC) position error. Method: To evaluate the changes in the gamma passing rate according to the MLC position error, 21 volumetric modulated arc therapy (VMAT) plans were generated using pelvic lymph node metastatic prostate cancer patient's data which is sensitive to MLC position errors as they involve several long, narrow, irregular fields. The ASW for each VMAT plan was calculated using our own code developed using Visual Basic for Applications (VBA). The gamma passing rate of the VMAT plan according to the MLC position error was evaluated using ArcCHECK (Sun Nuclear, Melbourne, FL, USA) while inducing symmetric MLC position errors in 0.25 mm intervals from −1 mm to +1 mm in the infinity medical linear accelerator (Elekta AB, Stockholm, Sweden). Finally, we examined the correlation between the change in the passing rate ([Formula: see text]) due to the MLC position error and the ASW in VMAT through linear regression analysis using the least squares method. Results: The ASW and [Formula: see text] were found to have a linear correlation according to the MLC position error, and the coefficient of determination was 0.88. For a 1 mm position error of MLC in VMAT, the gamma passing rate improved by approximately 11.9% as the ASW increased by 10 mm. Conclusion: These results are expected to be employed as guidelines to minimize the dose uncertainty due to MLC position error in VMAT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.