We developed a method to use NH2-functionalized polymer films to align and immobilize DNA molecules on a Si substrate. The plasma-polymerized cyclohexane film was deposited on the Si substrate according to the radio frequency plasma-enhanced chemical vapor deposition method using a single molecular precursor, and it was then treated by the dielectric barrier discharge method in a nitrogen environment under atmospheric pressure. Changes in the chemistry of the surface functional groups were studied using X-ray photoelectron spectroscopy and Fourier transformed infrared spectroscopy. The wettability of the surfaces was examined using dynamic contact angle measurements, and the surface morphology was evaluated using atomic force microscopy.We utilized a tilting method to align λ-DNA molecules that were immobilized by the electrostatic interaction between the amine groups in NH2-functionalized polymer films and the phosphate groups in the DNA. The DNA was treated with positively charged gold nanoparticles to make a conductive nanowire that uses the DNA as a template. We observed that the NH2-functionalized polymer film was useful for aligning and immobilizing the DNA, and thus the DNA-templated nanowires.
The hydrophilic TiO2 films were successfully deposited on slide glass substrates using titanium tetraisopropoxide as a single precursor without carriers or bubbling gases by a metal-organic chemical vapor deposition method. The TiO2 films were employed by scanning electron microscopy, Fourier transform infrared spectrometry, UV-Visible [UV-Vis] spectroscopy, X-ray diffraction, contact angle measurement, and atomic force microscopy. The temperature of the substrate was 500°C, and the temperatures of the precursor were kept at 75°C (sample A) and 60°C (sample B) during the TiO2 film growth. The TiO2 films were characterized by contact angle measurement and UV-Vis spectroscopy. Sample B has a very low contact angle of almost zero due to a superhydrophilic TiO2 surface, and transmittance is 76.85% at the range of 400 to 700 nm, so this condition is very optimal for hydrophilic TiO2 film deposition. However, when the temperature of the precursor is lower than 50°C or higher than 75°C, TiO2 could not be deposited on the substrate and a cloudy TiO2 film was formed due to the increase of surface roughness, respectively.
Metal-doped ZnO [MZO] thin films show changes of the following properties by a dopant. First, group III element (Al, In, Ga)-doped ZnO thin films have a high conductivity having an n-type semiconductor characteristic. Second, group I element (Li, Na, K)-doped ZnO thin films have high resistivity due to a dopant that accepts a carrier. The metal-doped ZnO (M = Li, Ag) films were prepared by radio frequency magnetron sputtering on glass substrates with the MZO targets. We investigated on the optical and electrical properties of the as-sputtered MZO films as dependences on the doping contents in the targets. All the MZO films had shown a preferred orientation in the [002] direction. As the quantity and the variety of metal dopants were changed, the crystallinity and the transmittance, as well as optical band gap were changed. The electrical resistivity was also changed with changing metal doping amounts and kinds of dopants. An epitaxial Li-doped ZnO film has a high resistivity and very smooth surface; it will have the most optimum conditions which can be used for the piezoelectric devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.