This paper presents the design of a wideband spiral antenna for ingestible capsule endoscope systems and a comparison between the experimental results in a human phantom and a pig under general anesthesia. As wireless capsule endoscope systems transmit real-time internal biological image data at a high resolution to external receivers and because they operate in the human body, a small wideband antenna is required. To incorporate these properties, a thick-arm spiral structure is applied to the designed antenna. To make practical and efficient use of antennas inside the human body, which is composed of a high dielectric and lossy material, the resonance characteristics and radiation patterns were evaluated through a measurement setup using a liquid human phantom. The total height of the designed antenna is 5 mm and the diameter is 10 mm. The fractional bandwidth of the fabricated antenna is about 21% with a voltage standing-wave ratio of less than 2, and it has an isotropic radiation pattern. These characteristics are suitable for wideband capsule endoscope systems. Moreover, the received power level was measured using the proposed antenna, a circular polarized receiver antenna, and a pig under general anesthesia. Finally, endoscopic capsule images in the stomach and large intestine were captured using an on-off keying transceiver system.
In this paper, we present an antenna system for microwave non-invasive hyperthermia lipolysis. The antenna system consists of a circular waveguide antenna radiating electromagnetic waves, AlN (Aluminum Nitride) radome and heat sink. The AlN radome with heat sink helps to extract heat from the skin to keep skin temperature not to rise during heating the lipolysis. The antenna was designed to be operated with TE(21) mode to maintain uniform temperature over wider area. The usability of the proposed system was verified by performing numerical simulation and hyperthermia lipolysis experiments on rats.
-In this paper, we propose a microwave hyperthermic lipolysis method to reduce subcutaneous fat without skin burn using external RF antenna. Since skin is closer to the antenna and has higher conductivity compared to the fat beneath, the temperature of the skin rises higher than that of the fat when the external antenna illuminates EM energy into a body, which may cause skin burn. In order to avoid the damages on skin, a skin cooling system is employed to the external antenna. The operating frequency is set at 5.8 GHz which is one of the ISM bands, to concentrate EM power efficiently on fat and not to heat up the muscle behind the fat. The operation time and RF power level has been determined based on experimental results with pork. The feasibility of the proposed method was shown by applying the method to the rat.
-This letter presents a measurement methodology of the complex permittivity of liquid using a partially open cavity in narrow band. The partially open cavity (POC) can measure dielectric small changes caused by the temperature variation of the liquid inside the cavity as well. Using the resonance frequency and unloaded quality factor of the proposed POC, the complex permittivity is evaluated. The apertures on the walls of the cavity are designed to circulate the liquid inside to outside of the POC and located at the corner area of the cavity to minimize the disturbance of field distribution at the dominant mode. The results measured by the proposed POC were compared with those by the conventional open-ended probe and Cole-Cole equation. The POC showed better performance in measuring small dielectric constant changes than the open-ended probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.