In this paper, a clustering method with proposed distance measurement to extract base load profiles from arbitrary data sets is studied. Recently, smart energy load metering devices are broadly deployed, and an immense volume of data is now collected. However, as this large amount of data has been explosively generated over such a short period of time, the collected data is hardly organized to be employed for study, applications, services, and systems. This paper provides a foundation method to extract base load profiles that can be utilized by power engineers, energy system operators, and researchers for deeper analysis and more advanced technologies. The base load profiles allow them to understand the patterns residing in the load data to discover the greater value. Up to this day, experts with domain knowledge often have done the base load profile realization manually. However, the volume of the data is growing too fast to handle it with the conventional approach. Accordingly, an automated yet precise method to recognize and extract the base power load profiles is studied in this paper. For base load profile extraction, this paper proposes Sample Pearson Correlation Coefficient (SPCC) distance measurement and applies it to Mean-Shift algorithm based nonparametric mode-seeking clustering. The superiority of SPCC distance over traditional Euclidean distance is validated by mathematical and numerical analysis.
With the emerging interest of autonomous vehicles (AV), the performance and reliability of the land vehicle navigation are also becoming important. Generally, the navigation system for passenger car has been heavily relied on the existing Global Navigation Satellite System (GNSS) in recent decades. However, there are many cases in real world driving where the satellite signals are challenged; for example, urban streets with buildings, tunnels, or even underpasses. In this paper, we propose a novel method for simultaneous vehicle dead reckoning, based on the lane detection model in GNSS-denied situations. The proposed method fuses the Inertial Navigation System (INS) with learning-based lane detection model to estimate the global position of vehicle, and effectively bounds the error drift compared to standalone INS. The integration of INS and lane model is accomplished by UKF to minimize linearization errors and computing time. The proposed method is evaluated through the real-vehicle experiments on highway driving, and the comparative discussions for other dead-reckoning algorithms with the same system configuration are presented.
In wireless sensor networks (WSNs), the efficiency of data transmission within a limited time is critical, especially for sensors designed with small batteries. In this paper, we design a cooperative transmission scheme with an energy-charging function in a WSN where an unmanned aerial vehicle (UAV) is considered for sensory data collection and energy charging. Specially, the sensor nodes are powered by the UAV for their data transmission. In the first phase, the UAV transmits the energy signal to the sensor nodes distributed on the ground. All the energy received by the sensor nodes is used to collect and transmit the sensory data to the UAV. In the second phase, local data transmissions are conducted among the collaborating sensor nodes in one cluster. In the third phase, the cooperative nodes send the collected sensory data to the UAV in the form of cooperative transmission. In the proposed scheme, we discovered that the size of the modulation constellation and the assigned time ratio of each phase were the key factors affecting the data transmission efficiency. In order to achieve the maximum data transmission, the optimal modulation constellation size and the optimal time ratio of each phase were found using the Lagrange multiplier method. Numerical results show that the proposed scheme with the optimal constellation size and the optimal time ratio can outperform the existing scheme in terms of the data transmission efficiency.
Wireless power transmission (WPT) is expected to play a crucial role in supporting the perpetual operations of Internet of Things (IoT) devices, thereby contributing significantly to IoT services. However, the development of efficient power allocation algorithms has remained a longstanding challenge. This paper addresses the aforementioned challenge by proposing a novel strategy, called energy poverty-based device selection (EPDS), in conjunction with energy beamforming, where orthogonal frequency bands are allocated to energy harvesting IoT devices (EHIs). To solve two power allocation problems, a logarithmic-based nonlinear energy harvesting model (NEHM) is introduced. The first problem tackled is the total received power maximization (TRPM), which is initially presented and, then, solved optimally in closed-form by incorporating Karush–Kuhn–Tucker (KKT) conditions with the modified water-filling algorithm. The second problem formulated is the common received power maximization (CRPM), which takes into account energy fairness considerations. To assess the proposed algorithms and gain insights into the effects of mobility, the mobility of EHIs is modeled as a one-dimensional random walk. Extensive numerical results are provided to validate the advantages of the proposed algorithms. Both the TRPM and CRPM algorithms exhibit exceptional performance in terms of total and minimum received energy, respectively. Furthermore, in comparison to round-robin scheduling, the EPDS demonstrates superior performance in terms of minimum received energy. This paper highlights the impact of the proposed energy harvesting (EH) model, demonstrating 12.68% and 3.69% higher values than the linear model for the minimum and total received energy, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.