Free fatty acids (FFAs), in addition to glucose, have been shown to stimulate insulin release through the G protein-coupled receptor (GPCR)40 receptor in pancreatic beta-cells. Intracellular free calcium concentration ([Ca(2+)](i)) in beta-cells is elevated by FFAs, although the mechanism underlying the [Ca(2+)](i) increase is still unknown. In this study, we investigated the action of linoleic acid on voltage-gated K(+) currents. Nystatin-perforated recordings were performed on identified rat beta-cells. In the presence of nifedipine, tetrodotoxin, and tolbutamide, voltage-gated K(+) currents were observed. The transient current represents less than 5%, whereas the delayed rectifier current comprises more than 95%, of the total K(+) currents. A long-chain unsaturated FFA, linoleic acid (10 microm), reversibly decreased the amplitude of K(+) currents (to less than 10%). This reduction was abolished by the cAMP/protein kinase A system inhibitors H89 (1 microm) and Rp-cAMP (10 microm) but was not affected by protein kinase C inhibitor. In addition, forskolin and 8'-bromo-cAMP induced a similar reduction in the K(+) current as that evoked by linoleic acid. Insulin secretion and cAMP accumulation in beta-cells were also increased by linoleic acid. Methyl linoleate, which has a similar structure to linoleic acid but no binding affinity to GPR40, did not change K(+) currents. Treatment of cultured cells with GPR40-specific small interfering RNA significantly reduced the decrease in K(+) current induced by linoleic acid, whereas the cAMP-induced reduction of K(+) current was not affected. We conclude that linoleic acid reduces the voltage-gated K(+) current in rat beta-cells through GPR40 and the cAMP-protein kinase A system, leading to an increase in [Ca(2+)](i) and insulin secretion.
Although it has been reported that oxytocin stimulates lipolysis in adipocytes, changes in the expression of oxytocin receptor (OTR) mRNA in adipogenesis are still unknown. The present study aimed to investigate the expression of OTR mRNA during adipocyte differentiation and fat accumulation in adipocytes. OTR mRNA was highly expressed in adipocytes prepared from mouse adipose tissues compared to stromal-vascular cells. OTR mRNA expression was increased during the adipocyte differentiation of 3T3-L1 cells. OTR expression levels were higher in subcutaneous and epididymal adipose tissues of 14-week-old male mice compared to 7-week-old male mice. Levels of OTR mRNA expression were higher in adipose tissues at four different sites of mice fed a high-fat diet than in those of mice fed a normal diet. The OTR expression level was also increased by refeeding for 4 h after fasting for 16 h. Oxytocin significantly induced lipolysis in 3T3-L1 adipocytes. In conclusion, a new regulatory mechanism is demonstrated for oxytocin to control the differentiation and fat accumulation in adipocytes via activation of OTR as a part of the hypothalamic-pituitary-adipose axis.
The factors that control fat deposition in adipose tissues are poorly understood. It is known that visceral adipose tissues display a range of biochemical properties that distinguish them from adipose tissues of subcutaneous origin. However, we have little information on gene expression, either in relation to fat deposition or on interspecies variation in fat deposition. The first step in this study was to identify genes expressed in fat depot of cattle using the differential display RT-PCR method. Among the transcripts identified as having differential expression in the two adipose tissues were cell division cycle 42 homolog (CDC42), prefoldin-5, decorin, phosphate carrier, 12S ribosomal RNA gene, and kelch repeat and BTB domain containing 2 (Kbtbd2). In subsequent experiments, we determined the expression levels of these latter genes in the pig and in mice fed either a control or high-fat diet to compare the regulation of fat accumulation in other animal species. The levels of CDC42 and decorin mRNA were found to be higher in visceral adipose tissue than in subcutaneous adipose tissue in cattle, pig, and mice. However, the other genes studied did not show consistent expression patterns between the two tissues in cattle, pigs, and mice. Interestingly, all genes were upregulated in subcutaneous and/or visceral adipose tissues of mice fed the high-fat diet compared with the control diet. The data presented here extend our understanding of gene expression in fat depots and provide further proof that the mechanisms of fat accumulation differ significantly between animal species. differential display and reverse transcriptase-polymerase chain reaction; fat depot THERE ARE TWO TYPES OF ADIPOSE TISSUE, subcutaneous and visceral. Recent studies indicate that adipocytes in these two fat depots show differences in basal metabolic properties, for example, in regulating volume, lipid composition, and so on (22,24). There is considerable current interest in visceral adipose tissue because of its relationship with various diseases such as cardiovascular disease, type 2 diabetes mellitus, hyperlipidemia, and syndrome X. There are a number of potential reasons why visceral adipose tissue may contribute to abnormalities in metabolism; among these are its anatomical site and pattern of venous drainage, and the presence of intrinsic and unique features of visceral adipocytes. The venous drainage of visceral adipose tissue is via the portal system, directly providing free fatty acid as a substrate for hepatic lipoprotein metabolism and glucose production (16,22,24). Additionally, in vitro studies using labeled tracers have demonstrated that visceral adipocytes have higher rates of lipid turnover than subcutaneous adipose tissue (19,20).Fat depot metabolism is also of importance in the commercial rearing of livestock such as cattle and pigs. One of the most important themes in the animal industry is the production of high quality meat at low cost. A better understanding of the specific accumulation mechanisms of fat depots should c...
This study aimed to investigate the effects of high and low levels of energy intake during the entire gestation period on the skeletal muscle development, organ development, and adipose tissue accumulation in fetuses of Wagyu (Japanese Black) cows, a breed with highly marbled beef. Cows were allocated to a high-nutrition (n = 6) group (fed 120% of the nutritional requirement) or low-nutrition (n = 6) group (fed 60% of the nutritional requirement). The cows were artificially inseminated with semen from the same sire, and the fetuses were removed by cesarean section at 260 AE 8.3 days of fetal age and slaughtered. The whole-body, total muscle, adipose, and bone masses of the fetal half-carcasses were significantly higher in the high-nutrition group than the low-nutrition group (p = 0.0018, 0.009, 0.0004, and 0.0362, respectively). Fifteen of 20 individual muscles, five of six fat depots, nine of 17 organs, and seven of 12 bones that were investigated had significantly higher masses in the high-nutrition group than the low-nutrition group. The crude components and amino acid composition of the longissimus muscle significantly differed between the low-and high-nutrition groups. These data indicate that maternal nutrition during gestation has a marked effect on the muscle, bone, and adipose tissue development of Wagyu cattle fetuses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.