In the printing plate developing process, the offset printing developer undergoes changes, as well as enrichment by the various chemicals, i.e. metals, organic binders and photosensitive compounds. The objective of this study was to investigate the electrocoagulation/flotation (ECF) treatment efficiency for the removal of copper, turbidity and organic substances from the waste offset printing developer (WOPD). The effect of operational parameters, such as electrode materials, current density, interelectrode distance and operating time, was studied. Also, the response surface analysis was applied to evaluate the effect of main operational variables and to get a balanced removal efficiency of investigated WOPD parameters by ECF treatment. The removal efficiency increases significantly with the increasing of operating time and mainly increases with the increasing of current density. The obtained results show that the interelectrode distance and combinations of electrodes determine the removal efficiency of copper, turbidity and organic substances. Based on the obtained results, the optimized parameters for the ECF treatment removal of investigated WOPD parameters were identified as: Al(À)/Fe(+) electrode combination with interelectrode
A new smoothing algorithm for the solution of nonlinear complementarity problems (NCP) is introduced in this paper. It is based on semismooth equation reformulation of NCP by Fischer-Burmeister function and its related smooth approximation. In each iteration the corresponding linear system is solved only approximately. Since inexact directions are not necessarily descent, a nonmonotone technique is used for globalization procedure. Numerical results are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.