Maintaining the biological functionality of immobilized proteins is the key to the success of numerous protein-based biomedical devices. To that end, we studied conformational change of calmodulin (CaM) immobilized on chemical patterns. 1-cysteine mutated calmodulin was immobilized on a mercapto-terminated surface through the cysteine-Hg-mercapto coupling. Utilizing Atomic Force Microscope (AFM), the average height of the immobilized calmodulin was determined to be 1.87 ± 0.19 nm. After incubation in EGTA solution, the average height of protein changed to 2.26 ± 0.21 nm, indicating conformational change of CaM to Apo-CaM. The immobilized CaM also demonstrated conformational change upon the reaction with known calmodulin antagonist chlorpromazine (CPZ). After incubation in CPZ solution, the average height of CPZ-bound CaM increased to 2.32 ± 0.20 nm, demonstrating the immobilized CaM still has the similar response as in bulk solution. These results show that immobilization of calmodulin on a solid support does not interfere with the ability of the protein to bind calcium and calmodulin antagonists. Our results demonstrate the feasibility of employing AFM to probe and understand protein conformational changes.
Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.
Human cardiac troponin I (cTnI) is the preferred biomarker in the assessment of myocardial infarction. It is known to interact with troponin C and T to form a trimeric complex. Whereas small amounts are found in the cytoplasm, most of cTnI is in the form of a complex with actin located in myofilaments. To understand these interactions of cTnI better, we first investigated the surface chemistry of cTnI as a Langmuir monolayer spread at the air-water interface. We investigated the optimal conditions for obtaining a stable Langmuir monolayer in terms of changing the ionic strength of the subphase using different concentrations of potassium chloride. Monolayer stability was investigated by compressing the cTnI monolayer to a specific surface pressure and keeping the surface pressure constant while measuring the decrease in the molecular area as a function of time. Aggregation and/or domain formation was investigated by using compression-decompression cycles, in situ UV-vis spectroscopy, Brewster angle microscopy (BAM), and epifluorescence microscopy. To ensure that the secondary structure is maintained, we used infrared reflection-absorption spectroscopy (IRRAS) directly at the air-subphase interface. It was found that cTnI forms a very stable monolayer (after more that 5000 s) that does not aggregate at the air-subphase interface. The cTnI molecules maintain their secondary structure and, on the basis of the low reflectivity observed using BAM measurements and the low reflection-absorption intensities measured with IRRAS spectroscopy, lie flat on the subphase with the alpha-helices parallel to the air-subphase interface.
Characterising key components within functional ingredients as well as assessing efficacy and bioavailability is an important step in validating nutritional interventions. Machine learning can assess large and complex data sets, such as proteomic data from plants sources, and so offers a prime opportunity to predict key bioactive components within a larger matrix. Using machine learning, we identified two potentially bioactive peptides within a Vicia faba derived hydrolysate, NPN_1, an ingredient which was previously identified for preventing muscle loss in a murine disuse model . We investigated the predicted efficacy of these peptides in vitro and observed that HLPSYSPSPQ and TIKIPAGT were capable of increasing protein synthesis and reducing TNF-α secretion, respectively. Following confirmation of efficacy, we assessed bioavailability and stability of these predicted peptides and found that as part of NPN_1, both HLPSYSPSPQ and TIKIPAGT survived upper gut digestion, were transported across the intestinal barrier and exhibited notable stability in human plasma. This work is a first step in utilising machine learning to untangle the complex nature of functional ingredients to predict active components, followed by subsequent assessment of their efficacy, bioavailability and human plasma stability in an effort to assist in the characterisation of nutritional interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.