The current results suggest that 27G PPV system is a safe and effective treatment for various vitreoretinal diseases. When learning to perform 27G PPV, surgeons may encounter a learning curve and should gradually expand surgical indications from easy to pathologically complicated cases.
Aim To retrospectively compare the safety and effectiveness of 27-gauge (27G) microincision vitrectomy surgery (MIVS) with 25-guage (25G) MIVS for the treatment of primary rhegmatogenous retinal detachment (RRD) with silicone oil tamponade. Methods Ninety-two patients with RRD who underwent MIVS from May 1, 2015, to June 30, 2017, were included in this study. Fifty-eight eyes underwent 25G MIVS and 34 eyes underwent 27G MIVS. We analyzed the characteristics of the patients, surgical time, main clinical outcomes, and rate of complications. Results The mean surgical time was 56.7 ± 35.9 min for the 25G MIVS and 55.7 ± 36.1 min for the 27G MIVS, and there was no significant difference (P=0.894) between the two groups. The primary anatomical success rate after a single operation was 94.8% for 25G MIVS and 91.2% for 27G MIVS (P=0.666). Baseline and final visit best-corrected visual acuity (BCVA) were 1.9 ± 1.1 and 1.0 ± 0.8 in the 25G group, and 1.7 ± 1.0 and 1.1 ± 0.8 in the 27G group. Last visit BCVA increased significantly in both groups (P < 0.001). However, there were no significant differences in terms of visual improvement ratio (>0.2 logMAR) between the two groups (P=0.173). No severe intraoperative complication was observed. Iatrogenic retinal breaks occurred in 2 eyes (3.4%) in the 25G group and 1 eye (2.9%) in the 27G group during the peripheral vitreous base shaving. The transient ocular hypertension (>25 mmHg) within postoperative week 1 was 25.9% in the 25G group and 11.8% in the 27G group (P=0.120). Conclusions This study found no significant anatomical or functional difference between 27G and 25G MIVS in the treatment of primary RRD. Therefore, 27G vitrectomy appears to be a safe and effective surgery for the treatment of primary RRD.
Background Wnt signaling is a critical determinant for the maintenance and differentiation of stem/progenitor cells, including trophoblast stem cells during placental development. Hyperactivation of Wnt signaling has been shown to be associated with human trophoblast diseases. However, little is known about the impact and underlying mechanisms of excessive Wnt signaling during placental trophoblast development. Results In the present work, we observed that two inhibitors of Wnt signaling, secreted frizzled-related proteins 1 and 5 (Sfrp1 and Sfrp5), are highly expressed in the extraembryonic trophoblast suggesting possible roles in early placental development. Sfrp1 and Sfrp5 double knockout mice exhibited disturbed trophoblast differentiation in the placental ectoplacental cone (EPC), which contains the precursors of trophoblast giant cells (TGCs) and spongiotrophoblast cells. In addition, we employed mouse models expressing a truncated β-catenin with exon 3 deletion globally and trophoblast-specifically, as well as trophoblast stem cell lines, and unraveled that hyperactivation of canonical Wnt pathway exhausted the trophoblast precursor cells in the EPC, resulting in the overabundance of giant cells at the expense of spongiotrophoblast cells. Further examination uncovered that hyperactivation of canonical Wnt pathway disturbed trophoblast differentiation in the EPC via repressing Ascl2 expression. Conclusions Our investigations provide new insights that the homeostasis of canonical Wnt-β-catenin signaling is essential for EPC trophoblast differentiation during placental development, which is of high clinical relevance, since aberrant Wnt signaling is often associated with trophoblast-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.