Phosphate glasses containing enough sodium to allow the fabrication of optical channel waveguides by ion exchange are photosensitive to intense ultraviolet irradiation from excimer lasers at 193 and 248 nm. Permanent submicrometer-period volume index gratings with modulation amplitudes larger than 10 −4 were obtained even after annealing the irradiated samples for 2 h at 230°C. Ultraviolet-visible absorption changes were measured in the irradiated areas, as well as structural modifications observed by surface profiling. Comparative studies were carried out for glasses that were also codoped with erbium and ytterbium to provide high gain at wavelengths near 1.5 m. Finally, we demonstrate narrowband gratings with reflectivities larger than 80% in silver ion-exchanged channel waveguides made in these phosphate glass substrates.
High reflectivity Bragg gratings have been written by ArF excimer laser through a phase mask into IOG-1 hybrid phosphate glass. After grating exposure, a waveguide was fabricated by silver-sodium ion-exchange. Reflectivities around 80% at a wavelength of ~ 1535 nm were measured from the waveguide for both quasi-TE and -TM polarizations. Waveguide laser operation with the photowritten waveguide grating as another mirror was demonstrated. Output power of 3.8 mW with a pump power of 199 mW could be extracted from the laser configuration.
A survey of the most common silicon-on-insulator (SOI) substrates and waveguide structures, as well as an evaluation of their applicability in optical telecommunication at the 1550 nm wavelength is presented. The design, fabrication and characterization of straight and bent SOI waveguides, as well as a thermo-optical SOI switch are described. The propagation loss of the realized SOI waveguides is below 0.25 dB/cm and thermo-optical switching is demonstrated at 10 kHz. The effect of cladding material on top SOI ridge waveguides on the polarization properties of straight and bent waveguides, as well as on directional couplers, is discussed. Both polarization independent and polarization maintaining waveguides are demonstrated. Finally, a basic principle of multi-step SOI waveguides is proposed. As examples of the potential in multi-step processing, efficient coupling between different rectangular, ridge and photonic crystal waveguides, ultra-small bends, waveguide mirrors, and extremely short multi-mode interference couplers are described.
Optical communications networks require integrated photonic components with negligible polarization dependence, which typically means that the waveguides must feature very low birefringence. Recent studies have shown that waveguides with low birefringence can be obtained, e.g., by use of silica-onsilicon waveguides or buried ion-exchanged glass waveguides. However, many integrated photonic circuits consist of waveguides with varying widths. Therefore low birefringence is consequently required for waveguides having different widths. This is a difficult task for most waveguide fabrication technologies. We present experimental results on waveguide birefringence for buried silver-sodium ion-exchanged glass waveguides. We show that the waveguide birefringence of the order of 10 Ϫ6 for waveguide mask opening widths ranging from 2 to 10 m can be obtained by postprocessing the sample through annealing at an elevated temperature. The measured values are in agreement with the values calculated with our modeling software for ion-exchanged glass waveguides. This unique feature of ion-exchanged waveguides may be of significant importance in a wide variety of integrated photonic circuits requiring polarizationindependent operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.