In this review article about fibrosis and arrhythmias, we show that the amount of collagen, a normal element of the heart muscle, increases with age and in heart disease. The relation between fibrosis and electrophysiological parameters such as conduction, fractionation of electrograms, abnormal impulse initiation as well as arrhythmogenicity is discussed. Next to the amount of fibrosis, we offer data suggesting that collagen texture too plays a role in conduction slowing and arrhythmia vulnerability. Data are shown revealing that fibrosis can also be induced by reduced sodium channel and connexin43 expression. Finally contrast-enhanced magnetic resonance to detect fibrosis and ventricular tachycardia vulnerability in a noninvasive way as well as a reduction of fibrosis and arrhythmogenicity by inhibition of the renin-angiotensin-aldosterone system is discussed.
Background Reduced Connexin43 (Cx43), sodium channel (Nav1.5) expression and increased collagen expression (fibrosis) are important determinants of impulse conduction in the heart. Objective To study the importance and interaction of these factors at very low Cx43 expression, inducible Cx43 KO mice with and without inducible ventricular tachycardia (VT) were compared by electrophysiology and immunohistochemistry. Methods Cx43CreER(T)/fl mice were induced with Tamoxifen and sacrificed after 2 weeks. Epicardial activation mapping was performed on Langendorff-perfused hearts, and arrhythmia vulnerability was tested. Mice were subdivided in VT+ (n=13) and VT− (n=10) and heart tissue was analyzed for Cx43, Nav1.5 and fibrosis. Results VT+ mice had decreased Cx43 expression with increased global, but not local, heterogeneity of Cx43, compared to VT− mice. Nav1.5-immunoreactive protein expression was reduced in VT+ versus VT− mice, specifically at sites devoid of Cx43. Levels of fibrosis were similar between VT− and VT+ mice. QRS-duration was increased and epicardial activation was more dispersed in VT+ mice than in VT− mice. The effective refractory period (ERP) was similar between both groups. Premature stimulation resulted in a more severe conduction slowing in VT+ compared to VT− hearts in the right ventricle. Separate patch clamp experiments in isolated rat ventricular myocytes confirmed that loss of Cx43 expression correlated with decreased sodium current amplitude. Conclusions Global heterogeneity in Cx43 expression and concomitant heterogeneous downregulation of sodium channel protein expression and sodium current leads to slowed and dispersed conduction, which sensitizes the heart for ventricular arrhythmias.
Increased cardiac collagen deposition is observed in almost every cardiac disease and plays an important role in the deteriorating function of the diseased heart. Propeptides of procollagen types I and III, the 2 major collagen types in the heart, can be detected in circulation. Although these propeptides reflect collagen synthesis, also breakdown products of collagen and the matrix metalloproteinases, responsible for the breakdown of the extracellular matrix, can be detected in blood and are used for investigating the turnover of collagen. Clinical trials are performed in recent years to examine the usage of these biomarkers in a diagnostic or prognostic way in heart failure patients. This review aims to discuss the formation of fibrosis, and studies investigating these biomarkers in heart failure are reviewed in this article. In addition, it is conferred what the flaws are of translating these biomarker levels to cardiac fibrosis formation and where we stand in using these biomarkers in clinics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.