Cyber hackers use email as a tool to trick, inject or drop malicious software into the recipient's device. Everyday users have to face off against, phishing or malicious emails and it would be a huge problem for whole organizations even if only one user clicked on a single link from this malicious email. The difficult issue is how to classify and detect those malicious emails from ordinary, especially spear phishing emails, which are designed for a particular target, or zero-day malicious emails that no one has ever found until now. In this paper, we introduce a way to classify and detect zero-day malicious emails by using deep-learning with data investigated from the email header and body itself, combined with dynamic analysis information as a group of features. Four different language email datasets can be used to train and test the system to simulate real-world diversity and zero-day malicious email attack situations. We succeeded in obtaining a satisfactory accuracy rate for detection results for both zero-day malicious email types and normal spam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.