Most natural biomolecules may exist in either of two enantiomeric forms. Although in nature, amino acid biopolymers are characterized by l-type homochirality, incorporation of d-amino acids in the design of self-assembling peptide motifs has been shown to significantly alter enzyme stability, conformation, self-assembly behavior, cytotoxicity, and even therapeutic activity. However, while functional metabolite assemblies are ubiquitous throughout nature and play numerous important roles including physiological, structural, or catalytic functions, the effect of chirality on the self-assembly nature and function of single amino acids is not yet explored. Herein, we investigated the self-assembly mechanism of amyloid-like structure formation by two aromatic amino acids, phenylalanine (Phe) and tryptophan (Trp), both previously found as extremely important for the nucleation and self-assembly of aggregation-prone peptide regions into functional structures. Employing d-enantiomers, we demonstrate the critical role that amino acid chirality plays in their self-assembly process. The kinetics and morphology of pure enantiomers is completely altered upon their coassembly, allowing to fabricate different nanostructures that are mechanically more robust. Using diverse experimental techniques, we reveal the different molecular arrangement and self-assembly mechanism of the dl-racemic mixtures that resulted in the formation of advanced supramolecular materials. This study provides a simple yet sophisticated engineering model for the fabrication of attractive materials with bionanotechnological applications.
The formation of ordered nanostructures by metabolites is gaining increased interest due to the simplicity of the building blocks and their natural occurrence. Specifically, aromatic amino acids possess the ability to form ordered supramolecular interactions due to their limited solubility in aqueous solution. Unexpectedly, L-tyrosine (L-Tyr) is almost 2 orders of magnitude less soluble in water compared to L-phenylalanine (L-Phe). However, the underlying mechanism is not fully understood as L-Tyr is more polar. Here, we explore the utilization of insoluble tyrosine assemblies for technological applications and their molecular basis by manipulating the basic building blocks of tightly packed dimers. We show that the addition of an amyloid inhibition agent increases L-Tyr solubility due to the disruption of the dimer formation. The molecular organization grants the L-Tyr crystal higher thermal stability and mechanical properties between three amino acids. Additionally, L-Tyr crystals are shown to generate high and stable piezoelectric power outputs under mechanical pressure in a sandwich device. By incorporating the rigid L-Tyr crystals into a soft polymer, a mechanoresponsive bending composite was fabricated. Furthermore, the L-Tyr crystalline needles exhibit an active photowaveguiding property, making them promising candidates for the generation of photonic biomaterial-based devices. The present work exemplifies a feasible strategy to explore physical properties of supramolecular self-assemblies comprises minimalistic naturally occurring building blocks and their applications in energy harvesting, photonic devices, stretchable electronics, and soft robotics.
Molecular stacking modes, generally classified as H-, J-, and X-aggregation, play a key role in determining the optoelectronic properties of organic crystals. However, the control of stacking transformation of a specific molecule is an unmet challenge, and a priori prediction of the performance in different stacking modes is extraordinarily difficult to achieve. In particular, the existence of hybrid stacking modes and their combined effect on physicochemical properties of molecular crystals are not fully understood. Herein, unexpected stacking transformation from H- to J- and X-aggregation is observed in the crystal structure of a small heterocyclic molecule, 4,4′-bipyridine (4,4′-Bpy), upon coassembly with N -acetyl- l -alanine (AcA), a nonaromatic amino acid derivative. This structural transformation into hybrid stacking mode improves physicochemical properties of the cocrystals, including a large red-shifted emission, enhanced supramolecular chirality, improved thermal stability, and higher mechanical properties. While a single crystal of 4,4′-Bpy shows good optical waveguiding and piezoelectric properties due to the uniform elongated needles and low symmetry of crystal packing, the significantly lower band gap and resistance of the cocrystal indicate improved conductivity. This study not only demonstrates cocrystallization-induced packing transformation between H-, J-, and X-aggregations in the solid state, leading to tunable mechanical and optoelectronic properties, but also will inspire future molecular design of organic functional materials by the coassembly strategy.
Realization of a self-assembled, nontoxic and eco-friendly piezoelectric device with high-performance, sensitivity and reliability is highly desirable to complement conventional inorganic and polymer based materials. Hierarchically organized natural materials such as collagen have long been posited to exhibit electromechanical properties that could potentially be amplified via molecular engineering to produce technologically relevant piezoelectricity. Here, by using a simple, minimalistic, building block of collagen, we fabricate a peptide-based piezoelectric generator utilising a radically different helical arrangement of Phe-Phe-derived peptide, Pro-Phe-Phe and Hyp-Phe-Phe, based only on proteinogenic amino acids. The simple addition of a hydroxyl group increases the expected piezoelectric response by an order of magnitude (d35 = 27 pm V−1). The value is highest predicted to date in short natural peptides. We demonstrate tripeptide-based power generator that produces stable max current >50 nA and potential >1.2 V. Our results provide a promising device demonstration of computationally-guided molecular engineering of piezoelectricity in peptide nanotechnology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.