Natronomonas pharaonis halorhodopsin (pHR) is an archaeal rhodopsin functioning as an inward-directed, light-driven Cl- pump. To characterize the electrophysiological features of the Cl- pump activity of pHR, we expressed pHR in Xenopus laevis oocytes and analyzed its photoinduced Cl- pump activity using the two-electrode voltage-clamp technique. Photoinduced outward currents were observed only in the presence of Cl-, Br-, I-, NO3-, and SCN-, but not in control oocytes, indicating that photoinduced anion currents were mediated by pHR. The relationship between photoinduced Cl- current via pHR and the light intensity was linear, demonstrating that transport of Cl- is driven by a single-photon reaction and that the steady-state current is proportional to the excited pHR molecule. The current-voltage relationship for pHR-mediated photoinduced currents was also linear between -150 mV and +50 mV. The slope of the line describing the current-voltage relationship increased as the number of the excited pHR molecules was increased by the light intensity. The reversal potential (VR) for Cl- as the substrate for the anion pump activity of pHR was about -400 mV. The value for VR was independent of light intensity, meaning that the VR reflects the intrinsic value of the excited pHR molecule. The value of VR changed significantly for the R123K mutant of pHR. We also show that the Cl- pump activity of pHR can generate a substantial negative membrane potential, indicating that pHR is a very potent Cl- pump. We have also analyzed the kinetics of voltage-dependent Cl- pump activity as well as that of the photocycle. Based on these data, a kinetic model for voltage-dependent Cl- transport via pHR is presented.
In this paper we report on the asymmetric 1,3-dipolar cycloaddition reactions of nitrile oxides mediated by pybox/ytterbium triflates, -/magnesium bromide, and -/magnesium perchlorate. It was confirmed that the reactions proceed smoothly to give isoxazoline derivatives in high enantiomeric excesses with Mg 2+ or Yb 3+ complexes and acrylamide dipolarophiles bearing an oxazolidinone or imidazolidinone coordination auxiliary as well as a pybox ligand. In reactions with a dipolarophile bearing 4,4-dimethyloxazolidinone as the coordination auxiliary, an enantiomeric excess (59 % ee) of the corresponding cycloaddition product was achieved by using a slow addition technique to generate nitrile oxides in
Precision oncology with next generation sequencing (NGS) using tumor tissue with or without blood has begun in Japan. Tumor molecular profiling tests are available, including the OncoGuide™ NCC Oncopanel System and FoundationOne
®
CDx (F1CDx). Our purpose was to identify potentially actionable genetic alterations in breast cancer with this comprehensive tumor profiling test. We enrolled 115 patients with pathologically diagnosed advanced or metastatic breast cancer. Comprehensive tumor genomic profiling, microsatellite instability, and tumor mutational burden (TMB) were determined using F1CDx. Testing was successful in 109/115 cases (94.8%). Clinically actionable alterations were identified in 76% of advanced breast cancer patients. The most frequent short variants were in
TP53
(48.6%),
PIK3CA
(38.5%),
GATA3
(11.0%),
PTEN
(11.0%), and
BRCA1
(10.1%), and structural variants were in
ERBB2
(24.8%),
MYC
(21.1%),
RAD21
(21.1%),
CCND1
(11.9%),
FGF19
(10.1%), and
PTEN
(10.1%). Regarding human epidermal growth factor receptor (HER)2 status, 106/109 samples (97.2%) were concordant between F1CDx and HER2 testing with immunohistochemistry/fluorescence in situ hybridization. However,
ERBB2
amplification was newly detected in four samples and
ERBB2
mutations were detected in five HER2‐negative breast cancer samples. Oncogenic
BRCA
mutations were found in three samples with F1CDx among 27 germline testing‐negative samples. The mean TMB in all samples was 6.28 mut/Mb and tended to be higher in luminal B and triple‐negative breast cancer (mean = 8.1 and 5.9 mut/Mb, respectively) compared with other subtypes. In conclusion, we established a system for precision oncology and obtained preliminary data with NGS as the first step. The information in this clinical sequencing panel will help guide the development of new treatments for breast cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.