Biochemistry. In the article ''A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease'' by
MRP is a recently identified ATP-binding cassette transporter. We previously established that MRP confers resistance to a spectrum of natural product cytotoxic drugs [Kruh, G.D., (1994) Cancer Res. 54, 1649-1652], that expression of MRP is associated with enhanced drug efflux [Breuninger, L.M., (1995) Cancer Res. 55, 5342-5347], and that MRP transcript is widely expressed in human tissues and solid tumor cell lines [Kruh, G.D., (1995) J. Natl. Cancer Inst. 87, 1256-1258]. In the present study the relationship between MRP and drug glutathione S-conjugates was examined. We observed that MRP was labeled by azidophenacylglutathione (APA-SG), a photoaffinity analog of glutathione, and that inside-out membrane vesicles prepared from MRP-overexpressing HL60/ADR cells transported this compound. Transport into membrane vesicles was ATP-dependent, sensitive to osmolarity, and saturable with regard to APA-SG and ATP concentrations, with Km values of 15 and 61 microM, respectively. APA-SG transport was competitively inhibited by the natural product cytotoxic drugs daunorubicin, vincristine, and etoposide, with Ki values of 4.8, 3.8, and 5.5 microM, respectively. Oxidized glutathione, the drug-glutathione S-conjugate DNP-SG, the LTD4 antagonist MK571 and arsenate were also competitive inhibitors, with Ki values of 9.0, 23.4, 1.1, and 15.0 microM, respectively. Analysis of the fate of monochlorobimane in MRP transfectants revealed reduced intracellular concentrations of drug-glutathione S-conjugates associated with enhanced efflux and altered intracellular distribution. These results indicate that MRP can transport glutathione conjugates in vitro and in living cells and suggest the possibility that the transporter may represent a link between cellular resistance to some classes of cytotoxic drugs and glutathione-mediated mechanisms of resistance. In addition, the observation that both mildly cationic or neutral natural product cytotoxic drugs and anionic compounds such as DNP-SG, MK571, and arsenate are competitive inhibitors of MRP action suggests that the substrate specificity of the transporter is quite broad.
Vibrio choferae 569B was found to be highly sensitive to a wide range of chemicals, particularly hydrophobic compounds and neutral and anionic detergents. The phospholipid profile of the outer membrane was similar to that reported for other Gram-negative bacteria. The lipopolysaccharide (LPS) contained 0-antigenic sugars and exhibited heterogeneity. In addition, the LPS moiety was characterized by a relatively low negative charge. Analysis by topological probes revealed the presence of a significant amount of exposed phospholipids in the outer membrane. The reduced negative charge of LPS molecules and the exposed phospholipids present in the outer membrane could be important in the increased permeation of exogenous compounds in V. choferae.
Hybrid genes were constructed to express bifunctional hybrid proteins in which staphyloccal nuclease A with or without an amino-terminal OmpA signal sequence was fused with TEM beta-lactamase (at the carboxyl terminal side) using the signal peptide of the major outer membrane lipoprotein of Escherichia coli as an internal linker. The hybrid proteins were found to be inserted in the membrane. Orientation of the hybrid protein with the OmpA signal peptide showed that the nuclease was translocated into the periplasm and the beta-lactamase remained in the cytoplasm. This indicates that the cleavable OmpA signal peptide served as a secretory signal for nuclease and the internal lipoprotein signal served as the transmembrane anchor. In the absence of the OmpA signal sequence the topology of the hybrid protein was reversed indicating that the internal lipoprotein signal peptide initially served as the signal peptide for the secretion of the carboxy terminal beta-lactamase domain across the membrane and subsequently as a membrane anchoring signal. The role of charged amino acids in the translocation and transmembrane orientation of membrane proteins was also analysed by introducing charged amino acids to either or both sides of the internal lipoprotein signal sequence in the bifunctional hybrid proteins in the absence of the amino-terminal signal sequence. Introduction of two lysine residues at the carboxy-terminal side of the internal signal sequence reversed the topology of the transmembrane protein by translocating the amino-terminal nuclease domain across the membrane, leaving the carboxyl terminal beta-lactamase domain in the cytoplasm. When three more lysine residues were added to the amino-terminal side of the internal signal sequence of the same construct the membrane topology flipped back to the original orientation. A similar reversion of the topology could be obtained by introducing negatively charged residues at the amino-terminal side of the internal signal sequence. Present results demonstrate for the first time that a bifunctional transmembrane protein can be engineered to assume either of the two opposite orientations and that charge balance around the transmembrane domain is a major factor in controlling the topology of a transmembrane protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.