Mitochondria are intracellular organelles with two distinct membranes, known as an outer mitochondrial membrane and inner cell membrane. Originally, mitochondria have been derived from bacteria. The main function of mitochondria is the production of ATP. However, this important organelle indirectly protects cells by consuming oxygen in the route of energy generation. It has been found that mitochondria are actively involved in the induction of the intrinsic pathways of apoptosis. So, there have been efforts to sustain mitochondrial homeostasis and inhibit its dysfunction. Notably, due to the potential role of mitochondria in the stimulation of apoptosis, this organelle is a promising target in cancer therapy. Resveratrol is a non-flavonoid polyphenol that exhibits significant pharmacological effects such as antioxidant, anti-diabetic, anti-inflammatory and anti-tumor. The anti-tumor activity of resveratrol may be a consequence of its effect on mitochondria. Multiple studies have investigated the relationship between resveratrol and mitochondria, and it has been demonstrated that resveratrol is able to significantly enhance the concentration of reactive oxygen species, leading to the mitochondrial dysfunction and consequently, apoptosis induction. A number of signaling pathways such as sirtuin and NF-κB may contribute to the mitochondrial-mediated apoptosis by resveratrol. Besides, resveratrol shifts cellular metabolism from glycolysis into mitochondrial respiration to induce cellular death in cancer cells. In the present review, we discuss the possible interactions between resveratrol and mitochondria, and its potential application in cancer therapy.
Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.
Background:
Bone marrow mononuclear cells (BM-MNCs), as a collection of hematopoietic and mesenchymal stem cells (MSCs), are capable of producing all blood cell lineages. The use of cytokines, growth factors, or cells capable of secreting these factors will help in stimulating the proliferation and differentiation of these cells into mature cell lines. On the other hand, MSCs are multipotent stromal cells that can be differentiated into various cell lineages. Moreover, these cells can control the process of hematopoiesis by secreting cytokines and growth factors. The present study aimed to investigate the effect of BM-derived MSCs on the differentiation of MNCs based on the assessment of cell surface markers by flow cytometry analysis.
Methods:
For this purpose, the MNCs were purified from rat BM using density gradient centrifugation. After that, they were cultured, expanded, and characterized. Next, BM-derivedMSCs were co-cultured with MNCs and then were either cultured with MNCs alone (control group) or co-cultured MNCs with BM derived-MSCs (experimental group). Finally, they were collected on day 7 and subjected to flow cytometry analysis for granulocyte markers and ERK protein’s investigation.
Results:
It was found that the expression levels of CD34, CD16, CD11b, and CD18 granulocyte markers, as well as protein expression of ERK, have significantly increased in the experimental group compared to the control group.
Conclusion:
Therefore, it can be concluded that MSCs could affect the granulocyte differentiation of MNCs via ERK protein expression, which is a key component of the ERK signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.