After more than a decade of meeting the designated objective of increasing productivity in agriculture, the South West coastal polders of Bangladesh have ended up as different man-made disasters. The failure of the polders to deliver the intended outcome is basically attributed to the lack of understanding of their hydro-morphological characteristics, inadequacy in their operation and maintenance, and failure to take into account their social relationship and culture roles. Changes in socioeconomic settings have also forced changes in the designated functions of the polders, but now the emerging context of climate change has become a major issue in rationalizing the coastal polders. In this context, this study is an attempt to review the historical and ongoing process of rationalization of the South West coastal polders, revealing that it is essential to take an integrated view of the hydrologic cycle and the interactions of human interventions. Finally, this paper recommends that an extended cost-benefit analysis with a multi-objective focus or a multi-criteria analysis, if monetizing is not possible, should be an option in rationalizing this multi-functional infrastructure. Proper macro-planning would require development of an institution capable of dealing with a task which is multi-dimensional and multidisciplinary in nature.
Flood havoc during 2019 in the Sangu River basin caused widespread damage to residents, crops, roads, and communications in parts of hills in Bangladesh. Developing flood hazard maps can play an essential step in risks management. For this purpose, this study assessed 12 hydro‐geomorphological factors, namely, topographic wetness index, elevation, slope, extreme rainfall, land‐use and land‐cover, soil type, lithology, curvature, drainage density, aspect, height above the nearest drainage, and distance from streams. Maps prepared by individual application of the Analytical Hierarchy Process (AHP) and Analytical Network Process (ANP) exhibit validation scores ranging from 0.77 to 0.79. It is found that the ANP‐based model under 1‐day maximum rainfall denotes a reliable hazard map presenting comparable accuracy to the field results. The hazard map under 100‐year return periods shows that a total of 0.71 million population living downstream is prone to “very high” flood because of its lowland morphology, mild slope, and high drainage density. Alarmingly, 39% of roads, 43% of farming lands, and 25% of education buildings are observed to lie in the highest flood‐prone area. Details on subdistrict level exposures have the potential to serve the decision‐makers and planners in site selection for flood management strategies and setting priorities for remedial measures.
Groundwater is used intensively in Asian mega-deltas yet the processes by which groundwater is replenished in these deltaic systems remain inadequately understood. Drawing insight from hourly monitoring of groundwater levels and rainfall in two contrasting settings, comprising permeable surficial deposits of Holocene age and Plio-Pleistocene terrace deposits, together with longer-term, lower-frequency records of groundwater levels, river stage, and rainfall from the Bengal Basin, conceptual models of recharge processes in these two depositional environments are developed. The representivity of these conceptual models across the Bengal Basin in Bangladesh is explored by way of statistical cluster analysis of groundwater-level time series data. Observational records reveal that both diffuse and focused recharge processes occur in Holocene deposits, whereas recharge in Plio-Pleistocene deposits is dominated by indirect leakage from river channels where incision has enabled a direct hydraulic connection between river channels and the Plio-Pleistocene aquifer underlying surficial clays. Seasonal cycles of recharge and discharge including the onset of dry-season groundwater-fed irrigation are well characterised by compiled observational records. Groundwater depletion, evident from declining groundwater levels with a diminished seasonality, is pronounced in Plio-Pleistocene environments where direct recharge is inhibited by the surficial clays. In contrast, intensive shallow groundwater abstraction in Holocene environments can enhance direct and indirect recharge via a more permeable surface geology. The vital contributions of indirect recharge of shallow groundwater identified in both depositional settings in the Bengal Basin highlight the critical limitation of using models that exclude this process in the estimation of groundwater recharge in Asian mega-deltas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.