Hypothalamic neuropeptides play essential roles in regulating energy and body weight balance. Energy imbalance and obesity have been linked to hypothalamic signaling defects in regulating neuropeptide genes; however, it is unknown whether dysregulation of neuropeptide exocytosis could be critically involved. This study discovered that synaptotagmin-4, an atypical modulator of synaptic exocytosis, is expressed most abundantly in oxytocin neurons of the hypothalamus. Synaptotagmin-4 negatively regulates oxytocin exocytosis, and dietary obesity is associated with increased vesicle binding of synaptotagmin-4 and thus enhanced negative regulation of oxytocin release. Overexpressing synaptotagmin-4 in hypothalamic oxytocin neurons and centrally antagonizing oxytocin in mice are similarly obesogenic. Synaptotagmin-4 inhibition prevents against dietary obesity by normalizing oxytocin release and energy balance under chronic nutritional excess. In conclusion, the negative regulation of synaptotagmin-4 on oxytocin release represents a hypothalamic basis of neuropeptide exocytosis in controlling obesity and related diseases.
Mutations in the protein SIMPLE account for the rare autosomal-dominant demyelination in type 1C CMT patients (CMT1C). SIMPLE plays a role in the production of exosomes. Dysregulated endosomal trafficking and changes in exosome-mediated intercellular communications might account for CMT1C molecular pathogenesis.
BackgroundStudies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA) exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whether the amount of FA ingested during gestation alters gene expression in the newborn cerebral hemisphere, and if the increased exposure to FA during gestation and throughout the lifetime alters behavior in C57BL/6J mice.MethodsDams were fed FA either at 0.4 mg or 4 mg/kg diet throughout the pregnancy and the resulting pups were maintained on the diet throughout experimentation. Newborn pups brain cerebral hemispheres were used for microarray analysis. To confirm alteration of several genes, quantitative RT-PCR (qRT-PCR) and Western blot analyses were performed. In addition, various behavior assessments were conducted on neonatal and adult offspring.ResultsResults from microarray analysis suggest that the higher dose of FA supplementation during gestation alters the expression of a number of genes in the newborns’ cerebral hemispheres, including many involved in development. QRT-PCR confirmed alterations of nine genes including down-regulation of Cpn2, Htr4, Zfp353, Vgll2 and up-regulation of Xist, Nkx6-3, Leprel1, Nfix, Slc17a7. The alterations in the expression of Slc17a7 and Vgll2 were confirmed at the protein level. Pups exposed to the higher dose of FA exhibited increased ultrasonic vocalizations, greater anxiety-like behavior and hyperactivity. These findings suggest that although FA plays a significant role in mammalian cellular machinery, there may be a loss of benefit from higher amounts of FA. Unregulated high FA supplementation during pregnancy and throughout the life course may have lasting effects, with alterations in brain development resulting in changes in behavior.
During the past decade, Translocator Protein 18 kDa (TSPO), previously named peripheral benzodiazepine receptor, has gained a great deal of attention based on its use as a clinical biomarker of neuroinflammation with therapeutic potential. However, there is a paucity of knowledge on the function(s) of TSPO in glial cells. Here, we identify a novel function of TSPO in microglia that is not associated with steroidogenesis. We propose a TSPO interaction with NADPH Oxidase linking the generation of reactive oxygen species (ROS) signaling to the induction of an antioxidant response to maintain redox homeostasis. This line of investigation may provide a greater understanding of TSPO glial cell biology and the knowledge gained may prove beneficial in devising therapeutic strategies.
Aberrant expression of the presynaptic serotonin 1A receptor (5-HT1A-R) because of a polymorphism in the 5-HT1A-R gene is associated with severe depression in human, whereas its absence up to postnatal day 21 (P21) in the forebrain of mice results in heightened anxiety in adulthood. These observations collectively indicate that the 5-HT1A-R has a crucial role in brain development. To understand the mechanistic underpinnings of this phenomenon, we used organotypic slice cultures of hippocampi from C57BL6 mice (C57) at P15, which coincides with the peak of neonatal synaptogenesis. Stimulation of the hippocampal 5-HT1A-R caused a dramatic increase in PSD95 expression and dendritic spine and synapse formation through sequential activation of the mitogen-activated protein kinase isozymes Erk1/2 and protein kinase C (PKC). Intrahippocampal infusion of 5-HT1A-R agonists and signaling inhibitors at P15 revealed that the same pathway through PKCα augments PSD95 expression and synaptogenesis in vivo in 24 h in both C57 as well as Swiss Webster mice. Furthermore, intrahippocampal infusion of the antidepressant fluoxetine, a serotonin reuptake inhibitor, also augmented PSD95 expression and synaptogenesis through the same pathway. This increased synaptogenesis was observed even 5 days after treatment. Finally, compared with the wild type, the 5-HT1A-R(−/−) mice harbor significantly less synapses in the hippocampus, but infusion of the PKC-stimulator and Alzheimer drug bryostatin into the 5-HT1A-R(−/−) mice to bypass the non-existent 5-HT1A-R boosted PSD95 expression and synaptogenesis. The elucidated signaling cascade explains how 5-HT1A-R regulates hippocampal sculpting and function, which may determine the affective phenotype of an adult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.