The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon’s contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles.
SU-8 and polydimethylsiloxane (PDMS) are both transparent materials with properties very convenient for rapid prototyping of microfluidic systems. However, previous efforts of combining these two materials failed due to poor adhesion between them. Herein, we introduce a promising low-temperature technique (< 100 °C) to irreversibly bond two or more structured layers of SU-8 and PDMS to create hybrid stacks. This offers new possibilities in design and fabrication of enclosed three-dimensional microstructures and microchannels with simple softlithography techniques. The potential of this method is demonstrated by the fabrication of a new version of our microfluidic sensor cartridge that was reported recently 1 .
The inner ear houses the sensory epithelium responsible for vestibular and auditory function. The sensory epithelia are driven by pressure and vibration of the fluid filled structures in which they are embedded so that understanding the homeostatic mechanisms regulating fluid dynamics within these structures is critical to understanding function at the systems level. Additionally, there is a growing need for drug delivery to the inner ear for preventive and restorative treatments to the pathologies associated with hearing and balance dysfunction. We compare drug delivery to neonatal and adult inner ear by injection into the posterior semicircular canal (PSCC) or through the round window membrane (RWM). PSCC injections produced higher levels of dye delivery within the cochlea than did RWM injections. Neonatal PSCC injections produced a gradient in dye distribution; however, adult distributions were relatively uniform. RWM injections resulted in an early base to apex gradient that became more uniform over time, post injection. RWM injections lead to higher levels of dye distributions in the brain, likely demonstrating that injections can traverse the cochlea aqueduct. We hypothesize the relative position of the cochlear aqueduct between injection site and cochlea is instrumental in dictating dye distribution within the cochlea. Dye distribution is further compounded by the ability of some chemicals to cross inner ear membranes accessing the blood supply as demonstrated by the rapid distribution of gentamicin-conjugated Texas red (GTTR) throughout the body. These data allow for a direct evaluation of injection mode and age to compare strengths and weaknesses of the two approaches.
This article presents the design and fabrication of a microfluidic biosensor cartridge for the continuous and simultaneous measurement of biologically relevant analytes in a sample solution. The biosensor principle is based on the amperometric detection of hydrogen peroxide using enzyme-modified electrodes. The low-integrated and disposable cartridge is fabricated in PDMS and SU-8 by rapid prototyping. The device is designed in such a way that it addresses two major challenges of biosensors using microfluidics approaches. Firstly, the enzymatic membrane is deposited on top of the platinum electrodes via a microfluidic deposition channel from outside the cartridge. This decouples the membrane deposition from the cartridge fabrication and enables the user to decide when and with what mixture he wants to modify the electrode. Secondly, by using laminar sheath-flow of the sample and a buffer solution, a dynamic diffusion layer is created. The analyte has to diffuse through the buffer solution layer before it can reach the immobilized enzyme membrane on the electrode. Controlling of the thickness of the diffusion layer by variation of the flow-rate of the two layers enables the user to adjust the sensitivity and the linear region of the sensor. The point where the buffer and sample stream join proved critical in creating the laminar sheath-flow. Results of computational simulations considering fluid dynamics and diffusion are presented. The consistency of the device was investigated through detection of glucose and lactate and are in accordance with the CFD simulations. A sensitivity of 157+/-28 nA/mM for the glucose sensor and 79+/-12 nA/mM for the lactate sensor was obtained. The linear response range of these biosensors could be increased from initially 2 mM up to 15 mM with a limit of detection of 0.2 mM.
present inside the medium, a protocol for a toxicant-free sampling is investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.