Three winter wheat (Triticum aestivum L.) composite cross populations (CCPs) that had been maintained in repeated parallel populations under organic and conventional conditions from the F 5 to the F 10 were compared in a two-year replicated field trial under organic conditions. The populations were compared to each other, to a mixture of the parental varieties used to establish the CCPs, and to three winter wheat varieties currently popular in organic farming. Foot and foliar diseases, straw length, ear length, yield parameters, and baking quality parameters were assessed. The overall performance of the CCPs differed clearly from each other due to differences in their parental genetics and not because of their conventional or organic history. The CCPs with high yielding background (YCCPs) also yielded higher than the CCPs with a high baking quality background (QCCPs; in the absence of extreme winter stress). The QCCPs performed equally well in comparison to the reference varieties, which were also of high baking quality. Compared to the parental mixture the CCPs proved to be highly resilient, recovering much better from winter kill in winter 2011/12. Nevertheless, they were out yielded by the references in that year. No such differences were seen in 2013, indicating that the CCPs are comparable with modern cultivars in yielding ability under organic conditions. We conclude that-especially when focusing on traits that are not directly influenced by natural selection (e.g. quality traits)-the choice of parents to establish a CCP is crucial. In the case of the QCCPs the establishment of a reliable high-quality population worked very well and quality traits were successfully maintained over time. However, in the YCCPs lack of winter hardiness in the YCCP parents also became clearly visible under relevant winter conditions. Keywords: baking quality; climate change; dynamic management; evolutionary breeding; heterogeneous populations; resilience; sustainable agriculture; Triticum aestivum;
a b s t r a c tSeedling root and shoot growth in hydroponics and allelopathic activity using a bioassay have been studied in very diverse populations of winter wheat grown under either organic or conventional conditions for a number of generations and subjected only to natural selection. The study was conducted on seeds from generation 6 (F 6 ) and 11 (F 11 ) from three composite cross populations (CCPs) produced by the Organic Research Centre in the UK. Since the F 5 the populations were maintained under organic and conventional conditions in Germany. Two parallel populations were created from each CC, resulting in a total of six organic and six conventional CCPs. The sets of parallel populations showed similar evolutionary trends indicating that the observed changes are related to differences in management rather than chance. Seedling root length and seedling root and shoot weight in the F 11 of the organically-managed CCPs were significantly greater than in the organic F 6 CCPs. In the conventionally-managed CCPs no such differences were observed. Both organic and conventional CCPs produced for quality showed higher early root and shoot growth than those produced for yield pointing to genetic differences among population types and highlighting the importance of early vigour for NUE. There were no significant differences in the allelopathic activity of the populations and between generations. The Shannon-Weaver diversity indices were similar for the studied traits in organic and conventional CCPs and hence no major changes in diversity had occurred between F 6 to F 11 . As changes in plant height were small and weed pressure in the fields low it is concluded that the observed differences are more related to NUE, rather than intra-specific competition for light or the direct effect of increased weed pressure in the organic system.
A winter wheat composite cross population (CCP), created in the UK in 2001, has been grown in Germany, Hungary, and the UK since 2005 (F5 generation). In 2008/09 (F8), a cycling pattern for the populations was developed between partners to test the effects of rapidly changing environments on agronomic performance and morphological characteristics. One CCP was grown by eight partners for one year and subsequently sent to the next partner, creating “cycling CCPs” with different histories. In 2013, all eight cycling CCPs and the three non-cycling CCPs (from Germany, Hungary, and the UK) were included in a two-year experiment in Germany with three line varieties as references. Differing seed weights of the F13 at sowing affected some agronomic parameters under drought conditions in 2014/15 but not under less stressful conditions in 2013/14. In both experimental years, the CCPs were comparable to the line varieties in terms of agronomic performance, with some CCPs yielding more than the varieties under the drought conditions of 2015. The results highlight the potential of CCPs to compete with line varieties, while the overall similarity of the CCPs based on their origin and cycling history for agronomic traits indicates a high buffering potential under highly variable environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.