The cloning of the so-called`parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identi®cation of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases.
Heterozygous mutations in the HNF1beta/vHNF1/TCF2 gene cause maturity-onset diabetes of the young (MODY5), associated with severe renal disease and abnormal genital tract. Here, we characterize two fetuses, a 27-week male and a 31.5-week female, carrying novel mutations in exons 2 and 7 of HNF1beta, respectively. Although these mutations were predicted to have different functional consequences, both fetuses displayed highly similar phenotypes. They presented one of the most severe phenotypes described in HNF1beta carriers: bilateral enlarged polycystic kidneys, severe pancreas hypoplasia and abnormal genital tract. Consistent with this, we detected high levels of HNF1beta transcripts in 8-week human embryos in the mesonephros and metanephric kidney and in the epithelium of pancreas. Renal histology and immunohistochemistry analyses of mutant fetuses revealed cysts derived from all nephron segments with multilayered epithelia and dysplastic regions, accompanied by a marked increase in the expression of beta-catenin and E-cadherin. A significant proportion of cysts still expressed the cystic renal disease proteins, polycystin-1, polycystin-2, fibrocystin and uromodulin, implying that cyst formation may result from a deregulation of cell-cell adhesion and/or the Wnt/beta-catenin signaling pathway. Both fetuses exhibited a severe pancreatic hypoplasia with underdeveloped and disorganized acini, together with an absence of ventral pancreatic-derived tissue. beta-catenin and E-cadherin were strongly downregulated in the exocrine and endocrine compartments, and the islets lacked the transporter essential for glucose-sensing GLUT2, indicating a beta-cell maturation defect. This study provides evidence of differential gene-dosage requirements for HNF1beta in normal human kidney and pancreas differentiation and increases our understanding of the etiology of MODY5 disorder.
Notch signaling is an evolutionarily conserved pathway involved in intercellular communication and is essential for proper cell fate choices. Numerous genes participate in the modulation of the Notch signaling pathway activity. Among them, Notchless (Nle) is a direct regulator of the Notch activity identified in Drosophila melanogaster. Here, we characterized the murine ortholog of Nle and demonstrated that it has conserved the ability to modulate Notch signaling. We also generated mice deficient for mouse Nle (mNle) and showed that its disruption resulted in embryonic lethality shortly after implantation. In late mNle ؊/؊ blastocysts, inner cell mass (ICM) cells died through a caspase 3-dependent apoptotic process. Most deficient embryos exhibited a delay in the temporal down-regulation of Oct4 expression in the trophectoderm (TE). However, mNle-deficient TE was able to induce decidual swelling in vivo and properly differentiated in vitro. Hence, our results indicate that mNle is mainly required in ICM cells, being instrumental for their survival, and raise the possibility that the death of mNle-deficient embryos might result from abnormal Notch signaling during the first steps of development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.