BackgroundPrevious research has demonstrated that hyperglycemia may protect the heart against ischemic injury. The aim of the present study was to investigate the association between hyperglycemia and myocardial infarction on cardiovascular autonomic modulation and cardiac oxidative stress profile in rats. Male Wistar rats were divided into: control (C), diabetic (D), myocardial infarcted (MI) and diabetic infarcted rats (DMI).MethodsDiabetes was induced by streptozotocin (STZ, 50 mg/Kg) at the beginning of the protocol and MI was induced by left coronary occlusion 15 days after STZ. Thirty days after streptozocin-induced diabetes, cardiovascular autonomic modulation was evaluated by spectral analysis, and oxidative stress profile was determined by antioxidant enzyme activities and superoxide anion, together with protein carbonylation and redox balance of glutathione (GSH/GSSG).ResultsThe diabetic and infarcted groups showed decreased heart rate variability and vagal modulation (p < 0.05); however, sympathetic modulation decreased only in diabetic groups (p < 0.05). Sympatho/vagal balance and vascular sympathetic modulation were increased only in the MI group (p < 0.05). Diabetes promoted an increase in catalase concentration (p < 0.05). Glutathione peroxidase activity was increased only in DMI when compared to the other groups (p < 0.05). Superoxide anion and protein carbonylation were increased only in MI group (p < 0.05). Cardiac redox balance, as evaluated by GSH/GSSG, was lower in the MI group (p < 0.05).ConclusionsThese data suggest that hyperglycemia promotes compensatory mechanisms that may offer protection against ischemia, as demonstrated by increased antioxidants, decreased pro-oxidants and protein damage, possibly related to the improvements in both redox balance and sympathetic modulation to the heart.
ObjectiveThe aim of this study was to evaluate the effects of aging on metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters after ovarian hormone deprivation (OVX).MethodsFemale Wistar rats (3 or 22 months old) were divided into: young controls, young ovariectomized, old controls, and old ovariectomized (bilateral ovaries removal). After a 9-week follow-up, physical capacity, metabolic parameters, and morphometric and cardiac functions were assessed. Subsequently, arterial pressure was recorded and cardiac autonomic control was evaluated. Oxidative stress was measured on the cardiac tissue, while inflammatory profile was assessed in the plasma.ResultsAging or OVX caused an increase in body and fat weight and triglyceride concentration and a decrease in both insulin sensitivity and aerobic exercise capacity. Left ventricular diastolic dysfunction and increased cardiac overload (myocardial performance index) were reported in old groups when compared with young groups. Aging and OVX led to an increased sympathetic tonus, and vagal tonus was lower only for the old groups. Tumor necrosis factor-α and interleukin-6 were increased in old groups when compared with young groups. Glutathione redox balance (GSH/GSSG) was reduced in young ovariectomized, old controls, and old ovariectomized groups when compared with young controls, indicating an increased oxidative stress. A negative correlation was found between GSH/GSSG and tumor necrosis factor-α (r=−0.6, P<0.003). Correlations were found between interleukin-6 with adipose tissue (r=0.5, P<0.009) and vagal tonus (r=−0.7, P<0.0002); and among myocardial performance index with interleukin-6 (r=0.65, P<0.0002), sympathetic tonus (r=0.55, P<0.006), and physical capacity (r=−0.55, P<0.003). The findings in this trial showed that ovariectomy aggravated the impairment of cardiac and functional effects of aging in female rats, probably associated with exacerbated autonomic dysfunction, inflammation, and oxidative stress.
Background Air pollution causes negative impacts on health. Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical manifestations and multifactorial etiology. Recent studies suggest that air pollution can trigger SLE and induce disease activity. However, this association has not been deeply investigated. Thus, the aim of this study was to evaluate whether exposure to fine particulate matter (PM2.5) exacerbates SLE manifestations, focusing on renal complications, in a lupus-prone animal model. Female NZBWF1 mice were exposed daily to 600 μg/m3 of inhaled concentrated ambient particles (CAP) or filtered air (FA). Survival rate, body weight, weight of organs (kidney, spleen, thymus, liver and heart), blood cell count, proteinuria, kidney stereology, renal histopathology, gene expression and oxidative stress were analyzed. Results Female NZBW mice exposed to CAP showed decreased survival, increased circulating neutrophils, early onset of proteinuria and increased kidney weight with renal cortex enlargement when compared to NZBW mice exposed to FA. Conclusions This work shows that air pollution aggravates some SLE manifestations in lupus-prone mice. These results reinforce the need of reducing air pollutant levels in order to promote a better quality of life for individuals diagnosed with SLE.
BackgroundHyperglycemia has been associated with decreased blood flow in various organs, leading to tissue damage and dysfunctions. Exercise training (ET) is known to promote beneficial changes in the autonomic nervous system and may have effects on circulation. The aim of this study was to evaluate coronary and renal blood flows and vascular resistances after ET in diabetic rats.MethodsThirty-two rats were divided into four groups (n = 8): sedentary control (SC), trained control (TC), sedentary diabetic (SD), trained diabetic (TD). Diabetes was induced by an injection of streptozotocin (STZ, 50 mg/kg). The ET was performed on a treadmill for 10 weeks. The blood flows were measured using colored microspheres.ResultsThe diabetic groups presented hyperglycemia (blood glucose >350 mg/dL) and ET did not change this parameter. The SD group showed reduced renal blood flow when compared to SC group, and ET was able to normalize this parameter in TD rats (SC: 4.3 ± 0.5; TC: 2.9 ± 0.3; SD: 1.9 ± 0.4; TD: 3.2 ± 0.4 mL/min/g). TD group presented increased coronary blood flow in relation to SD group (SC: 2.3 ± 0.23; TC: 2.8 ± 0.5; SD: 1.2 ± 0.4; TD: 3.0 ± 0.4 mL/min/g). The heart and kidneys vascular resistance were increased in SD group when compared to SC group, and ET was able to reverse these changes.ConclusionsGiven the relevance of cardiomyopathy and nephropathy in mortality of diabetics, our results demonstrated that ET is effective in improving coronary and renal blood flows and vascular resistances in STZ-diabetic rats, reinforcing the positive role of this approach in preventing hyperglycemia-induced long-term organ damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.