Gliomas are the most common primary brain tumors in adults. Despite the fact that they are relatively rare, they cause significant morbidity and mortality. High-grade gliomas or glioblastomas are rapidly progressing tumors with a very poor prognosis. The presence of an intrinsic immune system in the central nervous system is now more accepted. During the last decade, there has been no major progress in glioma therapy. The lack of effective treatment for gliomas can be explained by the strategies that cancer cells use to escape the immune system. This being said, immunotherapy, which involves blockade of immune checkpoint inhibitors, has improved patients’ survival in different cancer types. This novel cancer therapy appears to be one of the most promising approaches. In the present study, we will start with a review of the general concept of immune response within the brain and glioma microenvironment. Then, we will try to decipher the role of various immune checkpoint inhibitors within the glioma microenvironment. Finally, we will discuss some promising therapeutic pathways, including immune checkpoint blockade and the body’s effective anti-glioma immune response.
Chimeric antigen receptor (CAR) T-cells represent a new genetically engineered cell-based immunotherapy tool against cancer. The use of CAR T-cells has revolutionized the therapeutic approach for hematological malignancies. Unfortunately, there is a long way to go before this treatment can be developed for solid tumors, including colorectal cancer. CAR T-cell therapy for colorectal cancer is still in its early stages, and clinical data are scarce. Major limitations of this therapy include high toxicity, relapses, and an impermeable tumor microenvironment for CAR T-cell therapy in colorectal cancer. In this review, we summarize current knowledge, highlight challenges, and discuss perspectives regarding CAR T-cell therapy in colorectal cancer.
Gliomas are considered one of the most malignant tumors in the body. The immune system has the ability to control the initiation and development of tumors, including gliomas. Thus, immune cells find themselves controlled by various molecular pathways, inhibiting their activation, such as the immunosuppressive adenosine 2A receptor (A2AR). Our objective was to establish the expression profile and role of A2AR at the transcriptomic level, using real-time RT-PCR in Moroccan glioma patients, in addition to TCGA and CGGA cohorts. The real-time RT-PCR results in Moroccan patients showed that high expression of this gene was associated with poor survival in males. Our study on the CGGA cohort corroborated these results. In addition, there was a positive association of A2AR with T-cell exhaustion genes. A2AR also correlated strongly with genes that are primarily enriched in focal adhesion and extracellular matrix interactions, inducing epithelial mesenchymal transition, angiogenesis, and glioma growth. However, in the TCGA cohort, the A2AR showed results that were different from the two previously examined cohorts. In fact, this gene was instead linked to a good prognosis in patients with the astrocytoma histological type. The correlation and enrichment results reinforced the prognostic role of A2AR in this TCGA cohort, in which its high expression was shown to be related to lymphocyte differentiation and a successful cytolytic response, suggesting a more efficient anti-tumor immune response. Correlations and differential analyses based on A2AR gene expression, to understand the cause of the association of this gene with two different prognoses (CGGA males and TCGA Astrocytoma), showed that the overexpression of A2AR in Chinese male patients could be associated with the overexpression of extracellular adenosine, which binds to A2AR to induce immunosuppression and consequently a poor prognosis. However, in the second group (TCGA astrocytomas), the overexpression of the gene could be associated with an adenosine deficiency, and therefore this receptor does not undergo activation. The absence of A2AR activation in these patients may have protected them from immunosuppression, which could reflect the good prognosis. A2AR can be considered a promising therapeutic target in male CGGA and Moroccan patients with gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.