Understanding the extremes in geomagnetic activity is an important component in understanding just how severe conditions can become in the terrestrial space environment. Extreme activity also has consequences for technological systems. On the ground, extreme geomagnetic behavior has an impact on navigation and position accuracy and the operation of power grids and pipeline networks. We therefore use a number of decades of one‐minute mean magnetic data from magnetic observatories in Europe, together with the technique of extreme value statistics, to provide a preliminary exploration of the extremes in magnetic field variations and their one‐minute rates of change. These extremes are expressed in terms of the variations that might be observed every 100 and 200 years in the horizontal strength and in the declination of the field. We find that both measured and extrapolated extreme values generally increase with geomagnetic latitude (as might be expected), though there is a marked maximum in estimated extreme levels between about 53 and 62 degrees north. At typical midlatitude European observatories (55–60 degrees geomagnetic latitude), compass variations may reach approximately 3–8 degrees/minute, and horizontal field changes may reach 1000–4000 nT/minute, in one magnetic storm once every 100 years. For storm return periods of 200 years the equivalent figures are 4–11 degrees/minute and 1000–6000 nT/minute.
A surface electric field model is used to estimate the UK surface E-field during the 30 th October 2003 severe geomagnetic storm. This model is coupled with a power grid model to determine the flow of geomagnetically induced currents (GIC) through the Scottish part of the UK grid. Model data are compared with GIC measurements at four sites in the power network. During this storm measured and modelled GIC levels exceeded 40A and the surface electric field reached 5V/km at sites in the UK (compared with quiet time levels of less than 0.1 V/km). The electric field and grid models now form part of a GIC monitoring, analysis and warning software package with web interface, developed for use by the grid operator. This package also contains a daily geomagnetic activity forecast service, a solar wind shock detector, for geomagnetic storm warning, and a near real time geomagnetic data stream, for storm monitoring. 2 AGU Index Terms
Magnetic observatory data are widely used in the derivation of time-varying magnetic field models, often in combination with satellite magnetic data, when available. Traditionally the definitive observatory results are used, the availability of which can often lag those of the satellite data by months and even years. The recently defined quasi-definitive observatory data type has been introduced to meet the need to provide observatory data suitable for use in field modeling in a more rapid time frame and for producing Level 2 products planned for the upcoming European Space Agency Swarm mission. A method for producing quasi-definitive data is presented and the essential steps described. To evaluate the method, provisional data published on a next day basis since 2000 are tested against definitive data at five INTERMAGNET observatories. The means and standard deviations of the differences between the candidate quasi-definitive and definitive data are within the accuracy of 5 nT set by INTERMAGNET. Since the tested data were published on-line on a next day basis, they also easily meet the INTERMAGNET requirement of availability within three months. These results demonstrate that prompt production of quasi-definitive data is possible for observatories that already perform to the standards set by INTERMAGNET.
Abstract. The oil industry uses geomagnetic field information to aid directional drilling operations when drilling for oil and gas offshore. These operations involve continuous monitoring of the azimuth and inclination of the well path to ensure the target is reached and, for safety reasons, to avoid collisions with existing wells. Although the most accurate method of achieving this is through a gyroscopic survey, this can be time consuming and expensive. An alternative method is a magnetic survey, where measurements while drilling (MWD) are made along the well by magnetometers housed in a tool within the drill string. These MWD magnetic surveys require estimates of the Earth's magnetic field at the drilling location to correct the downhole magnetometer readings. The most accurate corrections are obtained if all sources of the Earth's magnetic field are considered. Estimates of the main field generated in the core and the local crustal field can be obtained using mathematical models derived from suitable data sets. In order to quantify the external field, an analysis of UK observatory data from 1983 to 2004 has been carried out. By accounting for the external field, the directional error associated with estimated field values at a mid-latitude oil well (55 • N) in the North Sea is shown to be reduced by the order of 20%. This improvement varies with latitude, local time, season and phase of the geomagnetic activity cycle. By accounting for all sources of the field, using a technique called Interpolation In-Field Referencing (IIFR), directional drillers have access to data from a "virtual" magnetic observatory at the drill site. This leads to an error reduction in positional accuracy that is close to matching that of the gyroscopic survey method and provides a valuable independent technique for quality control purposes.
S U M M A R YA new data weighting scheme is introduced for satellite geomagnetic survey data. Data weights for individual satellite samples at 20-s spacing are derived from two 'noise' (or unmodelled signal) estimators for the sample. First, the standard deviation along the 20 s of satellite track, centred on each sample, is computed as a measure of local magnetic activity. Second a larger-scale noise estimator is defined in terms of a 'local area vector activity' (LAVA) index for the sample. This is derived from activity measured at the geographically nearest magnetic observatories to the sample point. Weighting of the satellite data by the inverse-sum-of-squares of these noise estimators then leads to a robust model of the field, the 'Model of Earth's Magnetic Environment 2008', or MEME08, to about spherical harmonic degree 60. Our approach allows vector samples of the field to be used at all magnetic latitudes and, for example, results in a lithospheric magnetic field model with low spectral noise, comparable with other recent global models. We also do not require a particularly complex model parametrization, regularization, or prior data correction to remove estimates of unmodelled source fields.Global geomagnetic field research and modelling has been stimulated in the past decade by the Ørsted, CHAMP and SAC-C satellite magnetic survey missions. In particular the quantity and high quality of survey data now available for studying the Earth's magnetic field has allowed greater resolution of internal and external sources of the measured field. In the recent literature, questions of satellite data selection, filtering and treatment have been major areas of study, particularly in attempts to isolate the internal field of the Earth and for revealing details of core processes and of lithospheric structure. Recently, published models range from relatively simple representations of the internal field, for example, the International Geomagnetic Reference Field, version 10 (Macmillan & Maus 2006), to the 'Comprehensive Model' of Sabaka et al. (2004), which contains representations of major internal and external field sources, including the quiet, solar-induced magnetic variation of the ionosphere and a representation of field aligned current systems. More developed magnetospheric field models have also been made possible, for example, Maus & Lühr (2005), that model the quiet-time magnetospheric field in an appropriate sun-fixed coordinate system, rather than the geocentric system widely used by the global geomagnetic modelling community. Thomson & Lesur (2007) (hereafter referred as TL)-the paper on which the work reported here is based-described the global geomagnetic field model BGS/G/L/0706. In deriving BGS/G/L/0706, TL were concerned with improving satellite magnetic data selection techniques, for example by examining the spectral characteristics of models derived according to different data selection criteria. TL experimented to find the best use of magnetic activity indices for Ørsted and CHAMP satellite data, d...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.