Social media platforms provide active communication channels during mass convergence and emergency events such as disasters caused by natural hazards. As a result, first responders, decision makers, and the public can use this information to gain insight into the situation as it unfolds. In particular, many social media messages communicated during emergencies convey timely, actionable information. Processing social media messages to obtain such information, however, involves solving multiple challenges including: parsing brief and informal messages, handling information overload, and prioritizing different types of information found in messages. These challenges can be mapped to classical information processing operations such as filtering, classifying, ranking, aggregating, extracting, and summarizing. We survey the state of the art regarding computational methods to process social media messages and highlight both their contributions and shortcomings. In addition, we examine their particularities, and methodically examine a series of key subproblems ranging from the detection of events to the creation of actionable and useful summaries. Research thus far has, to a large extent, produced methods to extract situational awareness information from social media. In this survey, we cover these various approaches, and highlight their benefits and shortcomings. We conclude with research challenges that go beyond situational awareness, and begin to look at supporting decision making and coordinating emergency-response actions.
We analyze microblog posts generated during two recent, concurrent emergency events in North America via Twitter, a popular microblogging service. We focus on communications broadcast by people who were "on the ground" during the Oklahoma Grassfires of April 2009 and the Red River Floods that occurred in March and April 2009, and identify information that may contribute to enhancing situational awareness (SA). This work aims to inform next steps for extracting useful, relevant information during emergencies using information extraction (IE) techniques.
Crises and disasters have micro and macro social arrangements that differ from routine situations, as the field of disaster studies has described over its 100-year history. With increasingly pervasive information and communications technology and a changing political arena where terrorism is perceived as a major threat, the attention to crisis is high. Some of these new features of social life have created changes in disaster response that we are only beginning to understand. The University of Colorado is establishing an area of sociologically informed research and information and communications technology development in crisis informatics. This article reports on research that examines features of computer-mediated communication and information sharing activity during and after the April 16, 2007, crisis at Virginia Tech by members of the public. The authors consider consequences that these technology-supported social interactions have on emergency response and implications for methods in e-Social Science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.