Yeasts have broad importance as industrially and clinically relevant microbes and as powerful models for fundamental research, but we are only beginning to understand the roles yeasts play in natural ecosystems. Yeast ecology is often more difficult to study compared to other, more abundant microbes, but growing collections of natural yeast isolates are beginning to shed light on fundamental ecological questions. Here, we used environmental sampling and isolation to assemble a dataset of 1962 isolates collected from throughout the contiguous United States of America (USA) and Alaska, which were then used to uncover geographic patterns, along with substrate and temperature associations among yeast taxa. We found some taxa, including the common yeasts Torulaspora delbrueckii and Saccharomyces paradoxus, to be repeatedly isolated from multiple sampled regions of the USA, and we classify these as broadly distributed cosmopolitan yeasts. A number of yeast taxon-substrate associations were identified, some of which were novel and some of which support previously reported associations. Further, we found a strong effect of isolation temperature on the phyla of yeasts recovered, as well as for many species. We speculate that substrate and
Questions: How can floristic diversity be evaluated in conser‐vation plans to identify sites of highest interest for biodiversity? What are the mechanisms influencing the distribution of species in human‐dominated environments? What are the best criteria to identify sites where active urban management is most likely to enhance floristic diversity? Location: The Hauts‐de‐Seine district bordering Paris, France. Methods: We described the floristic diversity in one of the most urbanized French districts through the inventory of ca. 1000 sites located in 23 habitats. We built a new index of floristic interest (IFI), integrating information on richness, indigeneity, typicality and rarity of species, to identify sites and habitats of highest interest for conservation. Finally, we explored the relationship between site IFI and land use patterns (LUP). Results: We observed a total of 626 vascular plant species. Habitats with highest IFI were typically situated in seminatural environments or environments with moderate human impact. We also showed that neighbouring (urban) structures had a significant influence on the floristic interest of sites: for example, the presence of collective dwellings around a site had a strong negative impact on IFI. Conclusions: Our approach can be used to optimize management in urban zones; we illustrate such possibilities by defining a ‘Site Potential Value’, which was then compared with the observed IFI, to identify areas (e.g. river banks) where better management could improve the district's biodiversity.
Pittosporum obcordatum (Pittosporaceae; heart-leaved kōhūhū) is an endemic New Zealand plant species that is classified as Threatened-Nationally Vulnerable. It has a disjunct distribution and is only known from relatively few and small populations. Using 10 Inter-Simple Sequence Repeat markers (ISSRs), we studied patterns of genetic diversity and genetic differentiation among eight out of the c. 14 populations of this species to inform its conservation management. Pittosporum obcordatum has low genetic diversity at the population level (uH e = 0.169) compared to other longlived and outcrossing species, but genetic diversity is relatively high in comparison with several other threatened species. Spearman's Rank Correlation Coefficients suggest significant positive correlations between population size and genetic diversity as measured by the percentage of polymorphic loci and uH e. Pittosporum obcordatum also shows relatively high levels of genetic differentiation among populations (AMOVA-derived Φ' st = 0.508, P < 0.001; all pairwise Φ st values P < 0.05), indicating low genetic connectivity. Populations with relatively few plants are therefore prone to further reductions in genetic diversity through inbreeding and genetic drift. Of these, especially the Kaitaia, Owen Valley and Paengaroa populations are of conservation concern, because they contain private alleles, and therefore notably contribute to the genetic diversity of P. obcordatum.
Yeasts have broad importance as industrially and clinically relevant microbes and as powerful models for fundamental research, but we are only beginning to understand the roles yeasts play in natural ecosystems. Yeast ecology is often more difficult to study compared to other, more abundant microbes, but growing collections of natural yeast isolates are beginning to shed light on fundamental ecological questions. Here we used environmental sampling and isolation to assemble a dataset of 1,962 isolates collected from throughout the contiguous United States of America (USA) and Alaska, which were then used to uncover geographic patterns, along with substrate and temperature associations among yeast taxa. We found some taxa, including the common yeasts Torulaspora delbrueckii and Saccharomyces paradoxus, to be repeatedly isolated from multiple sampled regions of the US, and we classify these as broadly distributed cosmopolitan yeasts. A number of yeast taxon - substrate associations were identified, some of which were novel and some of which support previously reported associations. Further, we found a strong effect of isolation temperature on the phyla of yeasts recovered, as well as for many species. We speculate that substrate and isolation temperature associations reflect the ecological diversity of and niche partitioning by yeast taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.