Plants have been used since ancient times as an important source of biologically active substances. The aim of the present study was to investigate the phytochemical constituents (flavonoids and phenolics), antioxidant potential, cytotoxicity against HepG2 (human hepato carcinoma) cancer cell lines, and the antimicrobial activity of the methanol extract of selected traditional medicinal plants collected from Mizoram, India. A number of phenolic compounds were detected using HPLC-DAD-ESI-TOF-MS, mainly Luteolin, Kaempferol, Myricetin, Gallic Acid, Quercetin and Rutin, some of which have been described for the first time in the selected plants. The total phenolic and flavonoid contents showed high variation ranging from 4.44 to 181.91 μg of Gallic Acid equivalent per milligram DW (GAE/mg DW) and 3.17 to 102.2 μg of Quercetin/mg, respectively. The antioxidant capacity was determined by DPPH (IC50 values ranges from 34.22 to 131.4 μg/mL), ABTS (IC50 values ranges from 24.08 to 513.4 μg/mL), and reducing power assays. Antimicrobial activity was assayed against gram positive (Staphylococcus aureus), gram negative (Escherichia coli, Pseudomonas aeruginosa), and yeast (Candida albicans) demonstrating that the methanol extracts of some plants were efficacious antimicrobial agents. Additionally, cytotoxicity was assessed on human hepato carcinoma (HepG2) cancer cell lines and found that the extracts of Albizia lebbeck, Dillenia indica, and Bombax ceiba significantly decreased the cell viability at low concentrations with IC50 values of 24.03, 25.09, and 29.66 μg/mL, respectively. This is the first report of detection of phenolic compounds along with antimicrobial, antioxidant and cytotoxic potential of selected medicinal plants from India, which indicates that these plants might be valuable source for human and animal health.
BackgroundResearch of natural products from traditionally used medicinal plants to fight against the human ailments is fetching attention of researchers worldwide. Bidens pilosa Linn. var. Radiata (Asteraceae) is well known for its folkloric medicinal use against various diseases from many decades. Mizoram, North East India, has high plant diversity and the use of this plant as herbal medicine is deep rooted in the local tribes. The present study was executed to understand the pharmacological potential of B. pilosa leaves extract.MethodsThe antimicrobial potential was determined using agar well diffusion and broth microdilution method against bacterial and yeast pathogens. Cytotoxicity was evaluated using MTT and apoptotic DNA fragmentation assays. Further, the antioxidant ability of the extract was analysed using DPPH and ABTS free radical scavenging assay. Mosquitocidal activity was evaluated against third in-star larvae of C. quinquefasciatus using dose response and time response larvicidal bioassay. Additionally, the major phenolic and volatile compounds were determined using UHPLC-QqQLIT-MS/MS and GC/MS respectively.ResultsWe found that the extract showed highest antimicrobial activity against E. coli (MIC 80 μg/mL and IC50 110.04 μg/mL) and showed significant cytotoxicity against human epidermoid carcinoma (KB-3-1) cells with IC50 values of 99.56 μg/mL among the tested cancer cell lines.The IC50 values for scavenging DPPH and ABTS was 80.45 μg/mL and 171.6 μg/mL respectively. The extract also showed the high phenolics (72 μg GAE/mg extract) and flavonoids (123.3 μg Quercetin /mg extract). Lastly, five bioactive and six volatile compounds were detected using UHPLC-QqQLIT-MS/MS and GC-MS respectively which may be responsible for the plant’s bioactivities. An anticancerous compound, Paclitaxel was detected and quantified for the first time from B. pilosa leaves extract, which further showed the anticancerous potential of the tested extract.ConclusionOn the basis of the present investigation, we propose that the leaf extract of B. pilosa might be a good candidate for the search of efficient environment friendly natural bioactive agent and pharmaceutically important compounds.
Coronavirus Disease 2019 (COVID-19) has grown to be global public health emergency. The biosurfactants (BSs) are surface-active biomolecules with unique properties and wide applications. Several microbes synthesize secondary metabolites with surface-active properties which has wide range of anti-inflammatory and anti-viral role.. The monocytes and neutrophils are activated by bacteria which subsequently result in high secretion of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-12, Il-18 and IL-1β) and toll-like receptors-2 (TLR-2). Following the inflammatory response, BSs induce the production of cationic proteins, reactive oxygen species (ROS) and lysozyme, and thus can be utilized for therapeutic purposes. This review provides recent advances in the anti-inflammatory and antiviral activities of biosurfactants and discusses the potential use of these compounds against COVID-19, highlighting the need for in-vitro and in-vivo approaches to confirm this hypothesis. This suggestion is necessary because there are still no studies that have focused on the use of biosurfactants against COVID-19.
The study involves analyzing the performance of bivoltine Bombyx mori larvae reared on different host plants varieties. The consumption rate (CR) of different strains of B. mori was high when fed with Jorhat and TR10 mulberry plant varieties. Jorhat and TR10 mulberry plant varieties were found to contain significant amount of calcium, potassium, magnesium and phosphorus. Local (Hmute) mulberry plant variety had high amount of protein, carbohydrate and reducing sugar. Majority of the B. mori strains reared on Jorhat and TR10 mulberry plant varieties had high level of fibroin protein which resulted in increased silk productivity than those larvae reared with other mulberry varieties. The filament length was higher when reared on Jorhat and TR10 mulberry plant varieties. CSR4 × CSR2, FC1 × FC2, and FC2 × FC1 strains reared on Jorhat and TR10 mulberry plant varieties performed well in terms of economic parameters. Proteins and other nutrients in combination with high levels of micronutrients are very much essential for better silk quality. The present study attempted to identify the most suitable host plants for silkworm rearing under mountainous agro-ecological conditions which can lead to sustainable production of silk in relation to physiological and economic parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.