Automotive turbocharger components frequently experience complex Thermo-Mechanical Fatigue (TMF) loadings which require estimation of nonlinear plastic stresses for fatigue life calculations. These field duty cycles often contain rapid fluctuations in temperatures and consequently transient effects become important. Although current FE software are capable of performing these nonlinear finite element analyses, the turnaround time to compute nonlinear stresses for complex field duty cycles is still quite significant and detailed design optimizations for different duty cycles become very cumbersome. In recent years, a large number of studies have been made to develop analytical methods for estimating nonlinear stress from linear stresses. However, a majority of these consider isothermal cases which cannot be directly applied for thermo-mechanical loading. In this paper a detailed study is conducted with two different existing analytical approaches (Neuber’s rule and Hoffman-Seeger) to estimate the multi-axial nonlinear stresses from linear elastic stresses. For the Neuber’s approach, the multi-axial version proposed by Chu was used to correct elastic stresses from linear FE analyses. In the second approach, Hoffman and Seeger’s method is used to estimate the multiaxial stress state from plastic equivalent stress estimated using Neuber’s method for uniaxial stress. The novelty in the present work is the estimation of nonlinear stress for bilinear kinematic hardening material model under varying temperature conditions. The material properties including the modulus of elasticity, tangent modulus and the yield stress are assumed to vary with temperature. The application of two analytical approaches were examined for proportional and non-proportional TMF loadings and suggestions have been proposed to incorporate temperature dependent material behavior while correcting the plasticity effect into linear stress. This approach can be effectively used for complex geometries to calculate nonlinear stresses without carrying out a detailed nonlinear finite element analysis.
Automotive turbocharger components frequently experience complex thermomechanical fatigue (TMF) loadings wiiich require estimation of nonlinear plastic stresses for fatigue life calculations. These field duty cycles often contain rapid flucttiations in temperatures and consequently transient effects become important. Although current flnite element (FE) software are capable of performing these nonlinear flnite element analyses, the turnaround time to compute nonlinear stresses for complex field duty cycles is still quite significant and detailed design optimizations for different duty cycles become veiy cumbersome. In recent years, a large number of studies have been made to develop analytical methods for estimating nonlinear stress from linear stresses. However, a majority of these consider isothermal cases which cannot be directly applied for thermomechanical loading. In this paper a detailed study is conducted with two different existing analytical approaches (Neuber's rule and Hojfman-Seeger) to estimate the multiaxial nonlinear stresses from linear elastic stresses. For the Neuber's approach, the multiaxial version proposed by Chu was used to correct elastic stresses from linear FE analyses. In the second approach, Hoffman and Seeger's method is used to estimate the multiaxiai stress state from plastic equivalent stress estimated using Neuber's method for uniaxial stress. The novelty in the present work is the estimation of noniinear stress for bilinear kinematic hardening material model under varying temperature conditions. The material properties including the modulus of elasticity, tangent modulus and the yield stress are assumed to vary with temperature. The application of two analytical approaches were examined for proportional and nonproportional TMF loadings and suggestions have been proposed to incorporate temperature dependent material behavior while correcting the plasticity effect into linear stress. This approach can be effectively used for complex geometries to calculate nonlinear stresses without carrying out a detailed nonlinear finite element analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.