The scrambling of MOSFET below 22nm, 14nm, unwanted Short Channel Effects (SCE) like punch through, drain-induced barrier lowering (DIBL), along with huge leakage current are flowing through the device, which is not recognized for better performance. Multi-gate MOSFET generally measured as Fin-FET is the best substitute vital to stunned short channel effects. The work highlights results of the current-voltage electrical characteristics of the n-channel triple gate Fin-FET gatherings. The paper focuses on the study of geometry-based device design of Fin-FET by changing high k dielectrics materials from silicon SiO2 (3.9), Hafnium Oxide (HfO2), and metal gate work function ranging from 4.1eV to 4.5eV. The approach and simulation of 3Dimensional Fin-FET is carried to evaluate the better performance parameters of device for change in gate length by deploying different dielectrics materials. The effect on ratio of on current (ION) and off current (IOFF), threshold voltage (VTH), subthreshold slope (SS), and drain-induced barrier lowering (DIBL) is observed.
Fin-FET are insusceptible to short channel effects punch through, threshold voltage, leakage current but their concerts at high frequencies are conceded due to durable fringing field between gate and source with drain area. Because of high-technology progression, the gate construction of MOSFET has been upgraded from planar to nonplanar with an enrichment in the number of monitoring gates multiple gates on 3 sides. In this paper we mention Fin-FET assembly for high frequency applications. MOS-FET plays very energetic role but scaling of device affected on performance parameters like speed and power. Fin-FET is non planar novel device to solve the short channel effects which occurs due to scaling. Non-planar structure of Fin-FET parasitic capacitances like gate oxide overlap and fringe capacitance makes adverse effect like lower switching speed of device, making result on delay ion and ioff of device. In this paper we planned Fin-FET design procedure to measure oxide and fringe capacitance with low k dielectric spacer thickness and increase ion to recover device driving ability. Effect on threshold voltage having observed with low k spacer at least count of 0.051 V. By using 4.65 eV metal gate work function with front, top and back gate we control leakage current and threshold voltage. Seven nano meter gate length Fin-FET is design We measured oxide capacitance of 0.464 F for 19.28 GHz and fringe capacitance (69.66 nf) for 4.88 GHz frequency by designing the Fin-FET with high-K SOI MOSFETs which support 11.4 nA leakage current to improve the speed of the processor. In this research work, design topologies of Single Finger Fin Filed Effect Transistors are discussed and evaluate the probable result of fringe and parasitic capacitance from fringing area on the device. By using geometry of device like fin width, height, thickness and multiple fingers we measure the fringe capacitance and oxide capacitance of designed Fin-FET. HIGHLIGHTS In this Paper, we focus on fundamentals of novel device Fin-FET its working construction & design based on geometry parameter & capacitance measurement by designing model of 7 nm gate length In this work, we focus on how Fin-FET helps to reduce short channel effect by possessions of geometry parameters like gate length and Fin thickness & progress the performance of the nanoscale device From the simulation results we observe lowering of drain induced barrier lowering, subthreshold slope and leakage current, whereas threshold voltages rise From the observation, SCE has been attributed to the distribution of the junction electric fields into the channel region, producing lower DIBL which decreases VTH GRAPHICAL ABSTRACT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.