Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.
Chitosan is a naturally occurring biopolymer having diversified applications not only in the pharmaceutical field, but also in the biomedical profession. The presence of functional groups, i.e., hydroxyl, acetamido, and amine in the chitosan parent backbone, makes it a suitable candidate for chemical modification, and introduces desired physicochemical and biochemical properties, without any changes in its fundamental skeleton. The various modifications, i.e., alkylation, acylation, quaternization, hydroxyalkylation, carboxyalkylation, thiolation, sulfation, phosphorylation, enzymatic modifications, oligomerization, and graft copolymerization with assorted modifications, and their pharmaceutical and biomedical applications, are discussed in this article. Additionally, it is also limelighted how the chemically engineered chitosan has established a better place with regard to the vista of applications in the arena of sciences such as pharmaceutical, biomedical, biotechnological, tissue engineering, the textile industry, chemistry, the food industry, and many more. This review, hopefully, could enrich knowledge and bring forth new thoughts in line with progress in chitosan polymer science.
The application of colloidal and nanoparticulate carrier systems in the biomedical field has changed the definitions of diagnosis, treatment, and disease management. Carrier systems such as liposomes, polymeric particles, and micro-emulsion droplets are used for the sustained release of drugs, pesticides, fragrances, and other substances. Although such delivery systems are widely employed in specialized areas such as gene delivery, targeting to brain, tumor targeting, and oral vaccine formulations, problems associated with their stability and permeability are often encountered, thereby limiting their general application. In the series of vesicular systems, colloidosomes are emerging as a potential tool for controlled delivery of drugs as well as of cosmetics and food supplements. Colloidosomes are solid microcapsules formed by the self-assembly of colloidal particles at the interface of emulsion droplets. Colloidosomes offer precise control over their size, permeability, compatibility, and mechanical strength and can be prepared with an aqueous, aqueous gel, or oily core. This review focuses on the types, fabrication techniques, and stability of colloidosomes.
Abstract:In the present study, Eudragit S100 coated Citrus Pectin Nanoparticles (E-CPNs) were prepared for the colon targeting of 5-Fluorouracil (5-FU). Citrus pectin also acts as a ligand for galectin-3 receptors that are over expressed on colorectal cancer cells. Nanoparticles (CPNs and E-CPNs) were characterized for various physical parameters such as particle size, size distribution, and shape etc. In vitro drug release studies revealed selective drug release in the colonic region in the case of E-CPNs of more than 70% after 24 h. In vitro cytoxicity assay (Sulphorhodamine B assay) was performed against HT-29 cancer cells and exhibited 1.5 fold greater cytotoxicity potential of nanoparticles compared to 5-FU solution. In vivo data clearly depicted that Eudragit S100 successfully guarded nanoparticles to reach the colonic region wherein nanoparticles were taken up and showed drug release for an extended period of time. Therefore, a multifaceted strategy is introduced here in terms of receptor mediated uptake and pH-dependent release using E-CPNs for effective chemotherapy of colorectal cancer with uncompromised safety and efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.