The use of novel tobacco- and nicotine-containing vapor products that do not combust tobacco leaves is on the rise worldwide. The emissions of these products typically contain lower numbers and levels of potentially harmful chemicals compared with conventional cigarette smoke. These vapor products may therefore elicit fewer adverse biological effects. We compared the effects of emissions from different types of such products, i.e., our proprietary novel tobacco vapor product (NTV), a commercially available heat-not-burn tobacco product (HnB), and e-cigarette (E-CIG), and a combustible cigarette in a human bronchial epithelial cell line. The aqueous extract (AqE) of the test product was prepared by bubbling the produced aerosol into medium. Cells were exposed to the AqEs of test products, and then glutathione oxidation, Nrf2 activation, and secretion of IL-8 and GM-CSF were examined. We found that all endpoints were similarly perturbed by exposure to each AqE, but the effective dose ranges were different between cigarette smoke and the tobacco- and nicotine-containing vapors. These results demonstrate that the employed assays detect differences between product exposures, and thus may be useful to understand the relative potential biological effects of tobacco- and nicotine-containing products.
Yields in sidestream (SS) and mainstream (MS) smokes and sidestream to mainstream distribution ratios (SS/MS) of acidic components were examined for four types of cigarette made from Bright, Burley, Turkish and do~ mestic (c.v. Matsukawa) tobacco. Of the acidic corn~ ponents, formic and acetic acids were analysed by GC following n~butyl esterification, and acids other than formic and acetic acids and phenols similarly after trimethylsilylation. In acidic fractions of sidestream and mainstream smokes of four types of cigarettes, major phenolic components were phenol, catechol and hydroquinone, and major acids were formic, acetic, lactic, glycolic and succinic.
Background The use of organotypic human tissue models in genotoxicity has increased as an alternative to animal testing. Genotoxicity is generally examined using a battery of in vitro assays such as Ames and micronucleus (MN) tests that cover gene mutations and structural and numerical chromosome aberrations. At the 7th International Workshop on Genotoxicity Testing, working group members agreed that the skin models have reached an advanced stage of maturity, while further efforts in liver and airway models are needed [Pfuhler et al., Mutat. Res. 850–851 (2020) 503135]. Organotypic human airway model is composed of fully differentiated and functional respiratory epithelium. However, because cell proliferation in organotypic airway models is thought to be less active, assessing their MN-inducing potential is an issue, even in the cytokinesis-blocking approach using cytochalasin B (CB) [Wang et al., Environ. Mol. Mutagen. 62 (2021) 306–318]. Here, we developed a MN test using EpiAirway™ in which epidermal growth factor (EGF) was included as a stimulant of cell division. Results By incubating EpiAirway™ tissue with medium containing various concentrations of CB, we found that the percentage of binucleated cells (%BNCs) almost plateaued at 3 μg/mL CB for 72 h incubation. Additionally, we confirmed that EGF stimulation with CB incubation produced an additional increase in %BNCs with a peak at 5 ng/mL EGF. Transepithelial electrical resistance measurement and tissue histology revealed that CB incubation caused the reduced barrier integrity and cyst formation in EpiAirway™. Adenylate kinase assay confirmed that the cytotoxicity increased with each day of culture in the CB incubation period with EGF stimulation. These results indicated that chemical treatment should be conducted prior to CB incubation. Under these experimental conditions, it was confirmed that the frequency of micronucleated cells was dose-dependently increased by apical applications of two clastogens, mitomycin C and methyl methanesulfonate, and an aneugen, colchicine, at the subcytotoxic concentrations assessed in %BNCs. Conclusions Well-studied genotoxicants demonstrated capability in an organotypic human airway model as a MN test system. For further utilization, investigations of aerosol exposure, repeating exposure protocol, and metabolic activation are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.