Statins are known to lessen the severity of renal ischemia-reperfusion injury. The present study was undertaken to define the mechanism of renoprotective actions of statins using a mouse kidney injury model. Treatment of mice with pravastatin, a widely used statin, improved renal function after renal ischemia-reperfusion without lowering the plasma cholesterol level. Administration of pravastatin with mevalonate, a product of HMG-CoA reductase, eliminated renal protection suggesting an effect of pravastatin on mevalonate or its metabolism. In hypercholestrolemic apolipoprotein E knockout mice with reduced HMG-CoA reductase activity; the degree of injury was less severe than in control mice, however, there was no protective action of pravastatin on renal injury in the knockout mice. Treatment with a farnesyltransferase inhibitor (L-744832) mimicked pravastatin's protective effect but co-administration with the statin provided no additional protection. Both pravastatin and L-744832 inhibited the injury-induced increase in plasma IL-6 concentration to a similar extent. Our results suggest the protective effect of pravastatin on renal ischemia-reperfusion injury is mediated by inhibition of the mevalonate-isoprenoid pathway independent of its lipid lowering action.
Hepatic P450 monooxygenase activities, which strongly influence the efficacy and/or toxicity of drugs, are known to fluctuate daily. We also know that the P450 activities assessed by measurement of 7-alkoxycoumarin O-dealkylase (ACD) activities fluctuate daily, with apparently high values during the dark period in male rats. However, there is little knowledge about the factors that regulate daily fluctuation of P450 monooxygenase activities. In the present study using rats, we induced lesions in the suprachiasmatic nucleus (SCN) of the brain, the known site of the body's internal clock, and examined the effects on the daily fluctuation of the ACD activities to clarify the relationship between the SCN and the daily fluctuation of P450 monooxygenase activities. In addition, adrenalectomy was performed to re-evaluate the influence of adrenal hormones on the P450 activities. Our results indicated that daily fluctuations of the hepatic ACD activities were completely eliminated in the SCN-lesioned rats. However, the ACD activities in the adrenalectomized rats showed apparent daily fluctuations with high values during the dark period and low values during the light period. Therefore, this study demonstrated that the daily fluctuation of the hepatic P450 monooxygenase activities in male rats is controlled by the SCN but remains unaffected by the adrenal hormones.
Abstract. It is largely unknown whether hyperlipidemia is involved in the pathobiology of renal ischemia-reperfusion (I/R) injury that is an important cause of acute kidney injury. Here we studied the effect of experimental dyslipidemia on renal I/R injury. Renal I/ R injury was less severe in hyperlipidemic mice treated with poloxamer 407 than in the control mice. Cytokine analyses revealed decreased levels of renal and serum IL-6 in the hyperlipidemic mice after renal I/ R. Protection from renal I /R injury in the hyperlipidemic mice was diminished by administration of recombinant IL-6. Concanavalin A-induced IL-6 release from cultured splenocytes derived from the hyperlipidemic mice was lower than that from splenocytes of normal mice. In hypercholesterolemic apolipoprotein E-knockout mice, in which renal I/R injury is less severe than in control mice, renal I /R-induced IL-6 production was also less than that in controls. In angiopoietin-like 3-deficient mice, which were hypolipidemic, renal dysfunction and renal IL-6 level after I /R were similar to those of control mice. Our data indicate that the presence of experimental hyperlipidemia may be associated with a decreased risk of renal I/R injury, possibly mediated by reduced renal IL-6 production after the insult and extend the notion that an anti-IL6 agent would be useful for the treatment of acute kidney injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.