BackgroundPresence of Mycobacterium fortuitum in respiratory tracts usually indicates mere colonization or transient infection, whereas true pulmonary infection occurs in patients with gastroesophageal disease. However, little is known about the diagnostic indications for true M. fortuitum pulmonary infection and the natural history of the disease.Case presentationA 59-year-old man was referred to our hospital for treatment against M. fortuitum pulmonary infection. Fifteen years before the referral, he underwent total gastrectomy, after which he experienced esophageal reflux symptoms. After the referral, the patient was closely monitored without antimicrobial therapy because of mild symptoms and no pathological evidence of M. fortuitum pulmonary infection. During the observation, chest imaging showed migratory infiltrates. Two years after the referral, his lung biopsy specimen revealed foamy macrophages and multinucleated giant cells, indicating lipoid pneumonia. However, he was continually monitored without any treatment because there was no evidence of nontuberculous mycobacterial infection. Four years after the referral, he developed refractory pneumonia despite receiving adequate antibiotic therapy. After confirmation of granulomatous lesions, multiple antimicrobial therapy for M. fortuitum resulted in a remarkable improvement with no exacerbation for over 5 years. Random amplified polymorphic DNA polymerase chain reaction analysis revealed identical M. fortuitum strains in seven isolates from six sputum and one intestinal fluid specimens obtained during the course of the disease.ConclusionsWe have described a patient with M. fortuitum pulmonary infection who presented with migratory infiltrates. The pathological evidence and microbiological analysis suggested that M. fortuitum pulmonary infection was associated with lipoid pneumonia and chronic exposure to gastrointestinal fluid. Therefore, physicians should carefully monitor patients with M. fortuitum detected from lower respiratory tract specimens and consider antimicrobial therapy for M. fortuitum infection when the patient does not respond to adequate antibiotic therapy against common pneumonia pathogens.
Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
A 75-year-old woman presented with marked leukocytosis; the white cell count was 143.6 × 10³/μL with 38.6 % monocytes and 13.6 % immature granulocytes, including blasts. Bone marrow (BM) aspirate smears showed >90 % cellularity with hyperplasia of myeloid-lineage cells, 14.6 % monocytes, and 32.1 % blasts. The granulocyte series showed a range of dysplastic morphologies. The rate of peroxidase positivity was 51.5 %. CD36+ cells with monocytic differentiation comprised 64.6 % mononuclear cells. Metaphase spreads obtained from the BM revealed an aneuploid karyotype with -7 and a submetacentric marker chromosome derived from chromosome 2, which was determined to be inv(2)(p23q13) by fluorescence in situ hybridization using the Vysis ALK probe. RAN-binding protein 2 (RANBP2)-ALK fusion mRNA was confirmed by reverse transcriptase-mediated polymerase chain reaction and nucleotide sequencing. High-sensitivity anti-ALK immunohistochemistry of a BM biopsy specimen demonstrated nuclear membrane staining of leukemia cells. As the leukemia showed features of chronic myelomonocytic leukemia, the patient was treated with standard daunorubicin-cytarabine followed by azacitidine, leading to the durable suppression of leukemia progression. These findings suggest that inv(2)(p23q13)/RABBP2-ALK defines a small subset of myeloid leukemia characterized by differentiation to monocytes and sharing features of myelodysplastic syndrome/myeloproliferative neoplasm.
Background We aimed to elucidate differences in the characteristics of patients with coronavirus disease 2019 (COVID-19) requiring hospitalization in Japan, by COVID-19 waves, from conventional strains to the Delta variant. Methods We used secondary data from a database and performed a retrospective cohort study that included 3261 patients aged ≥ 18 years enrolled from 78 hospitals that participated in the Japan COVID-19 Task Force between February 2020 and September 2021. Results Patients hospitalized during the second (mean age, 53.2 years [standard deviation {SD}, ± 18.9]) and fifth (mean age, 50.7 years [SD ± 13.9]) COVID-19 waves had a lower mean age than those hospitalized during the other COVID-19 waves. Patients hospitalized during the first COVID-19 wave had a longer hospital stay (mean, 30.3 days [SD ± 21.5], p < 0.0001), and post-hospitalization complications, such as bacterial infections (21.3%, p < 0.0001), were also noticeable. In addition, there was an increase in the use of drugs such as remdesivir/baricitinib/tocilizumab/steroids during the latter COVID-19 waves. In the fifth COVID-19 wave, patients exhibited a greater number of presenting symptoms, and a higher percentage of patients required oxygen therapy at the time of admission. However, the percentage of patients requiring invasive mechanical ventilation was the highest in the first COVID-19 wave and the mortality rate was the highest in the third COVID-19 wave. Conclusions We identified differences in clinical characteristics of hospitalized patients with COVID-19 in each COVID-19 wave up to the fifth COVID-19 wave in Japan. The fifth COVID-19 wave was associated with greater disease severity on admission, the third COVID-19 wave had the highest mortality rate, and the first COVID-19 wave had the highest percentage of patients requiring mechanical ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.