Two different forms of death are commonly observed when Mycobacterium tuberculosis (Mtb)-infected macrophages die: (i) necrosis, a death modality defined by cell lysis and (ii) apoptosis, a form of death that maintains an intact plasma membrane. Necrosis is a mechanism used by bacteria to exit the macrophage, evade host defenses, and spread. In contrast, apoptosis of infected macrophages is associated with diminished pathogen viability. Apoptosis occurs when tumor necrosis factor activates the extrinsic death domain pathway, leading to caspase-8 activation. In addition, mitochondrial outer membrane permeabilization leading to activation of the intrinsic apoptotic pathway is required. Both pathways lead to caspase-3 activation, which results in apoptosis. We have recently demonstrated that during mycobacterial infection, cell death is regulated by the eicosanoids, prostaglandin E2 (proapoptotic) and lipoxin (LX)A4 (pronecrotic). Although PGE2 protects against necrosis, virulent Mtb induces LXA4 and inhibits PGE2 production. Under such conditions, mitochondrial inner membrane damage leads to macrophage necrosis. Thus, virulent Mtb subverts eicosanoid regulation of cell death to foil innate defense mechanisms of the macrophage.
BackgroundPresence of Mycobacterium fortuitum in respiratory tracts usually indicates mere colonization or transient infection, whereas true pulmonary infection occurs in patients with gastroesophageal disease. However, little is known about the diagnostic indications for true M. fortuitum pulmonary infection and the natural history of the disease.Case presentationA 59-year-old man was referred to our hospital for treatment against M. fortuitum pulmonary infection. Fifteen years before the referral, he underwent total gastrectomy, after which he experienced esophageal reflux symptoms. After the referral, the patient was closely monitored without antimicrobial therapy because of mild symptoms and no pathological evidence of M. fortuitum pulmonary infection. During the observation, chest imaging showed migratory infiltrates. Two years after the referral, his lung biopsy specimen revealed foamy macrophages and multinucleated giant cells, indicating lipoid pneumonia. However, he was continually monitored without any treatment because there was no evidence of nontuberculous mycobacterial infection. Four years after the referral, he developed refractory pneumonia despite receiving adequate antibiotic therapy. After confirmation of granulomatous lesions, multiple antimicrobial therapy for M. fortuitum resulted in a remarkable improvement with no exacerbation for over 5 years. Random amplified polymorphic DNA polymerase chain reaction analysis revealed identical M. fortuitum strains in seven isolates from six sputum and one intestinal fluid specimens obtained during the course of the disease.ConclusionsWe have described a patient with M. fortuitum pulmonary infection who presented with migratory infiltrates. The pathological evidence and microbiological analysis suggested that M. fortuitum pulmonary infection was associated with lipoid pneumonia and chronic exposure to gastrointestinal fluid. Therefore, physicians should carefully monitor patients with M. fortuitum detected from lower respiratory tract specimens and consider antimicrobial therapy for M. fortuitum infection when the patient does not respond to adequate antibiotic therapy against common pneumonia pathogens.
In vivo control of Mycobacterium tuberculosis (Mtb) reflects the balance between host-immunity and bacterial evasion strategies. Effector TH1 cells that mediate protective immunity by depriving the bacterium of its intracellular niche are regulated to prevent over exuberant inflammation. One key immunoregulatory molecule is Tim3. Although Tim3 is generally recognized to down regulate TH1 responses, we recently described that its interaction with Galectin-9 expressed by Mtb infected macrophages stimulates IL-1β secretion, which is essential for survival in the mouse model. Why IL-1β is required for host resistance to Mtb infection is unknown. Here we show that IL-1β directly kills Mtb in murine and human macrophages and does so through the recruitment of other antimicrobial effector molecules. IL-1β directly augments TNF signaling in macrophages through the upregulation of TNF secretion and TNFR1 cell surface expression, and results in activation of caspase-3. Thus, IL-1β and downstream TNF production leads to caspase-dependent restriction of intracellular Mtb growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.