One of the most widely used fabrication methods of three dimensional porous scaffolds involves compression moulding of a polymer salt mixture, followed by salt leaching. However, the scaffolds prepared by this technique have typically limited interconnectivity. In this study, besides salt particles, an additional polymeric porogen, poly(ethylene oxide), PEO, was added to poly(L-lactic acid), PLLA, to enhance the interconnectivity of the scaffolds. Compression moulded specimens were quenched and put into water, where PEO crystallized and phase separated. Following the leaching of PEO fraction, the permeability and interconnectivity among the macropores formed by salt leaching could be observed. The porosities obtained in the prepared scaffolds were between 76 to 86%. Moreover, the highest porosity of 86% was obtained with minimum fraction of total porogen. The water absorption of the porous scaffolds prepared with PEO could vary between 280 to 450% while water uptake of pure PLLA scaffolds was about 93%. The increase of interconnectivity induced by compounding PLLA with PEO could also be obtained in porous PLLA/starch blends and PLLA/hydroxyapatite composites demonstrating the versatility and wide applicability of this preparation protocol. The simplicity of this organic solvent free preparation procedure of three-dimensional porous scaffolds with high interconnectivity and high surface area to volume ratio holds a promise for several tissue engineering applications.
The three-dimensional scaffolds of a blend of starch and poly(L-lactic) acid, SPLA70, were produced using compression molding of polymer/salt mixture followed by leaching of salt. One series of scaffolds were prepared with varying polymer-to-salt ratio while keeping the salt size constant, and the other series of scaffolds were prepared with varying salt sizes while keeping the polymer-to-salt ratio constant. The X-ray microcomputed tomography and scanning electron microscopy assay were used to analyze the porous morphologies, porosity and distribution of porosity of the porous scaffolds. Salt-free and integrated SPLA70 scaffolds with porosities ranging from 74% to 82% and pore sizes of 125-250 to 500-1000 microm can be fabricated using the present fabrication technique. The water uptake of the SPLA70 scaffolds increases with increasing porosities and also with increasing pore size. In dry state, the storage modulus decreases with increasing porosity and also with increasing pore size. The normalized modulus values are related to normalized density of the scaffolds by a power-law function with an exponent between 2 and 3. For the immersed scaffolds under physiological conditions, the storage modulus was less dependent on porosity and pore size. However, the loss factor increased significantly compared with dry state measurements. The present study clearly shows that the mechanical performance of porous polymeric constructs in dry and in immersed state is completely different, and for comparison with biomechanical performance of tissues, the tests should ideally be performed in immersed state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.