Background
Indian fish industry produces a staggering amount of waste every year part of which is dumped as landfill leading to pollution.
Objective
This study aims to extract collagen from fish skin, a major component of this waste, hydrolyze it and use the hydrolysate as emulsifiers to increase the shelf life of food products.
Materials and methods
Collagen was purified from the skin of Catfish, Mullet and Indian Salmon were characterized through infrared and diffraction studies. The samples were hydrolyzed enzymatically. The hydrolysates were assayed for emulsifying, foam stabilizing and hemolytic properties.
Results
The samples displayed an electrophoretic and infrared spectral profile corresponding to that of collagen type I. X-ray diffraction patterns revealed the presence of triple helix and traces of phosphate. The hydrolysates (6 kDa) exhibited the highest emulsion at 2.74±0.20 m2/g (for 57.00±0.50 min) and foam stability in the range of 75–78%, respectively. The hydrolysates were able to stabilize drug and food formulations successfully and two of the samples exhibited less than 3% toxicity as determined through hemolytic assay.
Conclusion
Collagen hydrolysates from fish skin, a common fish industry waste, were found to be bioactive and non-toxic making them suitable replacements for synthetic emulsifiers.
Tea is produced from the Camellia sinensis plant and can generally be divided into categories based on how they are processed. In general, green tea that is unfermented C. sinensis has been considered superior to black tea in health benefits. It contains a unique set of catechins that possess biological activity as antioxidant, anti-inflammatory and antiproliferative, which is potentially significant to the prevention and treatment of various forms of diseases. Oral cavity oxidative stress and inflammation, consequent cigarettes due to nicotine and acrolein, may be reduced in the presence of green tea polyphenols. In addition, green tea polyphenols can close down halitosis through modification of odorant sulfur components. Usually, green tea defends healthy cells from malignant transformation and locally has the ability to induce apoptosis in oral cancer cells. In unison, there is an increasing implication in the health benefits of green tea in the field of oral health. This review will cover recent findings on the therapeutic properties and anticancer health benefits of green tea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.