This study developed models to solve problems of optimisation, production, and consumption in waste management based on methods of system analysis. Mathematical models of the problems of optimisation and sustainable waste management in deterministic conditions and in a fuzzy environment were formulated. The income from production was maximised considering environmental standards that apply to the field of macroeconomics and microeconomics. The proposed approach used MANAGER software to formalise and solve the problem of revenue optimisation with production waste management to optimise the production of oil products with waste management at a specific technological facility of the Atyrau oil refinery in Kazakhstan. Based on the combined application of the principles of maximin and Pareto optimality, a formulation of the problem of production optimisation with waste management was obtained and a heuristic algorithm for solving the formulated fuzzy optimisation problem with waste management was developed.
Sustainable management issues of waste during drilling oil wells in marine conditions, the process of disposal of drill cuttings in the conditions of deficiency, and fuzzy initial information using fuzzy inference system are investigated. Based on the conducted system analysis, the main criteria for controlling the process of re-injection of suspended drill cuttings were analyzed and selected. We described the technology of preparation and injection of drill cuttings slurry into the underground horizon. The method of modeling and management of the process of disposal of drilling cuttings in the marine environment in a fuzzy environment with the use of fuzzy inference system, which helps to overcome the problems of scarcity and fuzziness of the original information due to the knowledge and experience of experts are proposed. The scheme and structure of the elements of the fuzzy inference system based on the Mamdani algorithm are given. The implementation of the fuzzy output system procedure was carried out in MatLab using Fuzzy Logic Toolbox. For the purpose of sustainable waste management in the process of oil production of marine fields, waste management tasks are formulated as a fuzzy mathematical programming problem, which takes into account economic and environmental criteria and many production constraints that may be fuzzy. Since the vector of such criteria is characterized by inconsistency, the developed methods for solving the set tasks of sustainable management are based on various tradeoff schemes modified to work in a fuzzy environment. The novelty and originality of the developed methods lies in the fact that, unlike the well-known methods of similar methods for solving fuzzy problems, they are set and solved without conversion to a system of equivalent deterministic problems, with-out losing the main part of the collected fuzzy information. This allows, through the full use of the original fuzzy information, to obtain a more adequate solution to the fuzzy problem of the real problem under production conditions.
The normal distribution of a random variable is usually used in studies of the probabilistic properties of information systems. Using the normal distribution to approximate the distributions determined over a bounded distorts the physical meaning of the model and the numerical results obtained can only be used as an initial approximation. The purpose of the work is to improve methods for calculating the probability properties of infocommunication systems. The object of study is an analytical method for calculating the request processing time in the system, the subject is the formula for calculating the duration of sequential processing of a request by elements of the system with uniformly distributed independent random processing times. For positive random variables, it is proposed to use finite-interval distribution laws, for example, beta distribution. Density formulas and probability functions for the sums of two, three, and four independent randomly distributed variables are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.