In this article, we have briefly examined the entropy generation in magnetohydrodynamic (MHD) Eyring-Powell fluid over an unsteady oscillating porous stretching sheet. The impact of thermal radiation and heat source/sink are taken in this investigation. The impact of embedded parameters on velocity function, temperature function, entropy generation rate, and Bejan number are deliberated through graphs, and discussed as well. By studying the entropy generation in magnetohydrodynamic Eyring-Powell fluid over an unsteady oscillating porous stretching sheet, the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is increased with the escalation in porosity and magnetic parameter, while increased with the escalation in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are discussed through tables. The partial differential equations are converted to ordinary differential equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the solution of the problem. The results of this investigation agree, satisfactorily, with past studies.
In this article, the effects of a Casson Nanofluid boundary layer flow, over an inclined extending surface with Soret and Dufour, is scrutinized. The model used in this study is based on the Buongiorno model of the thermal efficiencies of the fluid flows in the presence of Brownian motion and thermophoresis properties. The non-linear problem for Casson Nanofluid flow over an inclined channel is modeled to gain knowledge on the heat and mass exchange phenomenon, by considering important flow parameters of the intensified boundary layer. The governing non-linear partial differential equations are changed to non-linear ordinary differential equations and are afterward illustrated numerically by the Keller-Box scheme. A comparison of the established results, if the incorporated effects are lacking, is performed with the available outcomes of Khan and Pop [1] and recognized in a nice settlement. Numerical and graphical results are also presented in tables and graphs.
In this article, the non-Newtonian fluid model named Casson fluid is considered. The semi-infinite domain of disk is fitted out with magnetized Casson liquid. The role of both thermophoresis and Brownian motion is inspected by considering nanosized particles in a Casson liquid spaced above the rotating disk. The magnetized flow field is framed with Navier’s slip assumption. The Von Karman scheme is adopted to transform flow narrating equations in terms of reduced system. For better depiction a self-coded computational algorithm is executed rather than to move-on with build-in array. Numerical observations via magnetic, Lewis numbers, Casson, slip, Brownian motion, and thermophoresis parameters subject to radial, tangential velocities, temperature, and nanoparticles concentration are reported. The validation of numerical method being used is given through comparison with existing work. Comparative values of local Nusselt number and local Sherwood number are provided for involved flow controlling parameters.
Modern optical fiber required a double-layer resin coating on the glass fiber to provide protection from signal attenuation and mechanical damage. The most important plastics resin used in coating of fiber optics are plasticized polyvinyle (PVC), low/high density polyethylene (LDPE/HDPE), nylon, and polysulfone. Polymer flow during optical fiber coating in a pressure type coating die has been simulated under non-isothermal conditions. The flow dependent on the wire or fiber velocity, geometry of the die, and the viscosity of the polymer. The wet-on-wet coating process is an efficient process for two-layer coating on the fiber optics. In the present study, the constitutive equation of polymer flow satisfies viscoelastic Phan-Thien-Tanner (PTT) fluid, is used to characterize rheology of the polymer melt. Based on the assumption of the fully developed incompressible and laminar flow, the viscoelastic fluid model of two-immiscible resins-layers modeled for simplified-geometry of capillary-annulus where the glass fiber drawing inside the die at high speed. The equation describing the flow of the polymer melt inside the die was solved, analytically and numerically, by the Runge-Kutta method. The effect of physical characteristics in the problem has been discussed in detail through graphs by assigning numerical values for several parameters of interest. It is observed that velocity increases with increasing values of ε D 1 2 , ε D 2 2 , X 1 , and X 2 . The volume flow rate increases with an increasing Deborah number. The thickness of coated fiber optic increases with increasing ε D 1 2 , ε D 2 2 , and δ . Increase in Brinkman number and Deborah number enhances the rate of heat transfer. It is our first attempt to model PTT fluid as a coating material for double-layer optical fiber coating using the wet-on-wet coating process. At the end, the present study is also compared with the published work as a particular case, and good agreement is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.