Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.
Conditioning and processing of biological signals represent interesting challenges for wearable electronics in health applications. Information gathering from these signals requires complex hardware circuitry and dedicated computation resources. The design of innovative analog front-end integrated circuits, combined with efficient signal processing algorithms, allows the development of platforms for monitoring, activity and gesture recognition based on embedded real-time systems. This paper describes an Electromyography pattern recognition system based on the combination of low cost passive sensors, an innovative analog front-end and a low power microcontroller. The performance of the proposed system matches state-of-the-art high-end active sensors, opening the way to the development of affordable and accurate wearable devices.
In battery-powered medical instrumentation, the resolution and signal bandwidth of analog-to-digital converters (ADCs) have to be adapted to the needs of the application to avoid power wastage. This paper presents a reconfigurable successive approximation register (SAR) ADC implemented in 130 nm CMOS that resolves 5-14 bit with a maximum achievable effective number of bits (ENOB) of 13.5 using non-subtractive dither. In the proposed ADC design, the power consumption can be traded for accuracy to improve the energy efficiency and extend its application range, while reducing system integration complexity. A figure-of-merit (FoM) of 59 fJ/conversion is achieved at 1.2 V supply and the converter occupies an area of 0.42 . Measurement results of the ADC integrated in a multi-channel analog front-end (AFE) circuit show the suitability of the ADC for portable medical monitoring devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.