Abstract-It is well known that suboptimal detection schemes for multiple-input multiple-output (MIMO) spatial multiplexing systems (equalization-based schemes as well as nulling-and-cancelling schemes) are unable to exploit all of the available diversity, and thus, their performance is inferior to ML detection. Motivated by experimental evidence that this inferior performance is primarily caused by the inability of suboptimal schemes to deal with "bad" (i.e., poorly conditioned) channel realizations, we study the decision regions of suboptimal schemes for bad channels. Based on a simplified model for bad channels, we then develop two computationally efficient detection algorithms that are robust to bad channels. In particular, the novel sphere-projection algorithm (SPA) is a simple add-on to standard suboptimal detectors that is able to achieve near-ML performance and significantly increased diversity gains. The SPA's computational complexity is comparable with that of nulling-and-cancelling detectors and only a fraction of that of the Fincke-Phost sphere-decoding algorithm for ML detection.
Lattice reduction by means of the LLL algorithm has been previously suggested as a powerful preprocessing tool that allows to improve the performance of suboptimal detectors and to reduce the complexity of optimal MIMO detectors. The complexity of the LLL algorithm is often cited as polynomial in the dimension of the lattice. In this paper we argue that this statement is not correct when made in the MIMO context. Specifically, we demonstrate that in typical communication scenarios the worst-case complexity of the LLL algorithm is not even finite. For i.i.d. Rayleigh fading channels, we further prove that the average LLL complexity is polynomial and that the probability for an atypically large number of LLL iterations decays exponentially.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.