For the first time, a germania-based sol-gel coating was used in capillary microextraction (CME) in combination with high-performance liquid chromatography (HPLC). A hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), was covalently bonded into a sol-gel germania matrix in the course of its creation from an alkoxide precursor via hydrolytic polycondensation reactions. A thin layer of this in situ-created sol-gel hybrid material was covalently anchored to the inner walls of a 0.25 mm i.d. fused silica capillary to produce a sol-gel germania triblock polymeric sorbent in the form of a highly stable surface coating. Such a coating served as an effective extracting phase for the preconcentration of a wide range of polar and nonpolar analytes (e.g., alcohols, amines, ketones, phenols, and polycyclic aromatic hydrocarbons) with nanomolar and picomolar detection limits. Most significantly, the sol-gel germania triblock polymer coating demonstrated impressive resistance to extreme pH conditions, surviving 5 days of continuous exposure to 1.0 M HCl (pH approximately 0.0) or 1.0 M NaOH (pH approximately 14.0), practically without any changes in performance. This shows the suitability of sol-gel germania hybrid organic-inorganic hybrid materials for use as sorbents or stationary phases under extreme pH conditions, often needed in a variety of separation and sample preparation techniques and applications, including ion chromatography, hydrophobic interaction chromatography, proteomics, HPLC with electrochemical detection, isoelectric focusing, and extraction of acidic and basic analytes.
Sol-gel technology provides a simple and reliable method for solid-phase microextraction (SPME) fiber preparation through in situ creation of surface-bonded organic-inorganic hybrid coatings characterized by enhanced thermal stability and solvent-resistance properties that are important for the coupling of SPME with GC and HPLC, respectively. The sol-gel coating technology has led to the development of an extensive array of sol-gel sorbent coatings for SPME. In this article, sol-gel microextraction coatings are reviewed, with particular attention on their synthesis, characterization, and applications in conjunction with GC and HPLC analyses. In addition, the development of sol-gel-coated stir bars, their inherent advantages, and applications are discussed. Next, the development and applications of sol-gel capillary microextraction (CME) in hyphenation with GC and HPLC is extensively reviewed. The newly emerging germania- and titania-based sol-gel microextraction phases look promising, especially in terms of pH and hot solvent stability. Finally, sol-gel monolithic beds for CME are reviewed. Such monolithic beds are in a position to greatly improve the extracting capabilities and enhanced sensitivity in CME.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.