Neurogenesis in the subgranular zone of the hippocampal dentate gyrus may act as an endogenous repair mechanism in Alzheimer's disease (AD), and the Wnt signaling pathway has been suggested to closely modulate neurogenesis in amyloid-b (Ab)-related AD models. The present study investigated whether mesenchymal stem cells (MSCs) would modulate hippocampal neurogenesis via modulation of the Wnt signaling pathway in a model of AD. In Ab-treated neuronal progenitor cells (NPCs), the coculture with MSCs increased significantly the expression of Ki-67, GFAP, SOX2, nestin, and HuD compared to Ab treatment alone. In addition, MSC treatment in Ab-treated NPCs enhanced the expression of b-catenin and Ngn1 compared to Ab treatment alone. MSC treatment in Ab-treated animals significantly increased the number of BrdU-ir cells in the hippocampus at 2 and 4 weeks compared to Ab treatment alone. In addition, quantitative analysis showed that the number of BrdU and HuD double-positive cells in the dentate gyrus was significantly higher in the MSC-treated group than in controls or after Ab treatment alone. These results demonstrate that MSC administration significantly augments hippocampal neurogenesis and enhances the differentiation of NPCs into mature neurons in AD models by augmenting the Wnt signaling pathway. The use of MSCs to modulate endogenous adult neurogenesis may have a significant impact on future strategies for AD treatment.
Microglia in the brain show distinctive phenotypes that serve different functions. In particular, M2-polarized microglia are anti-inflammatory and phagocytic cells that serve a restorative function. In this study, we investigated whether mesenchymal stem cells (MSCs) enhance the phagocytic clearance of α-synuclein via M2 microglia polarization, and thereby exert neuroprotective effects in α-synuclein-enriched experimental models and patients with multiple system atrophy (MSA). Treatment of BV2 cells with α-synuclein induced an inflammatory phenotype, whereas co-culture of α-synuclein-treated BV2 cells with MSCs induced an anti-inflammatory M2 phenotype, with decreased α-synuclein levels and increased lysosomal activity, leading to greater viability of neuronal cells co-cultured with BV2 cells. Using IL-4 receptor siRNA in BV2 cells and IL-4 siRNA in MSCs, we found that M2 microglia polarization was induced by IL-4 secreted from MSCs. In α-synuclein-inoculated mice, MSC treatment induced M2 microglia polarization decreased α-synuclein levels, and had a prosurvival effect on neurons. Using IL-4 and IL-4 receptor knockout mice, we further confirmed that IL-4 secreted from MSCs induced phagocytic clearance of α-synuclein through M2 microglia polarization. Next, we found that the cerebrospinal fluid (CSF) from MSC-transplanted MSA patients induced microglia M2 polarization and had a prosurvival effect via enhanced clearance of α-synuclein in α-synuclein-treated BV2 cells. Finally, a serial CSF study demonstrated that changes in oligomeric α-synuclein from baseline to 1-year follow-up were greater in the CSF of MSC-transplanted MSA patients than in placebo-transplanted MSA patients. These findings indicate that MSCs exert a neuroprotective effect via the clearance of extracellular α-synuclein by controlling microglia M2 polarization, suggesting that MSCs could be used as a disease-modifying therapy for patients with α-synucleinopathies.
Ample evidence suggests that α-synuclein is released from cells and propagated from one area of the brain to others via cell-to-cell transmission. In terms of their prion-like behavior, α-synuclein propagation plays key roles in the pathogenesis and progression of α-synucleinopathies. Using α-synuclein-enriched models, we show that mesenchymal stem cells (MSCs) inhibited α-synuclein transmission by blocking the clathrin-mediated endocytosis of extracellular α-synuclein via modulation of the interaction with N-methyl-D-aspartate receptors, which led to a prosurvival effect on cortical and dopaminergic neurons with functional improvement of motor deficits in α-synuclein-enriched models. Furthermore, we identify that galectin-1, a soluble factor derived from MSCs, played an important role in the transmission control of aggregated α-synuclein in these models. The present data indicated that MSCs exert neuroprotective properties through inhibition of extracellular α-synuclein transmission, suggesting that the property of MSCs may act as a disease-modifying therapy in subjects with α-synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.