Photoaged skin contains elastotic materials in the upper reticular dermis. This phenomenon is commonly known as solar elastosis. In this study, we investigated the effects of heat on the expression of tropoelastin and fibrillin-1, two main components of elastic fibers, and on matrix metalloproteinase (MMP)-12, the most active MMP against elastin, in human skin in vivo. Heat was found to increase tropoelastin mRNA and protein expression in the epidermis and in the dermis. Fibrillin-1 mRNA and protein expression were increased by heat in the epidermis, but were decreased in the dermis. We found that pre-treatment of skin with N-acetyl cysteine or genistein for 24 h prior to heat treatment inhibited the heat-induced expression of tropoelastin, but not of fibrillin-1. These data indicate that reactive oxygen species may play a role in tropoelastin expression by heat, but not in fibrillin-1 expression. We also found that heat treatment increases MMP-12 mRNA and protein expression in human skin. Our results suggest that the abnormal production of tropoelastin and fibrillin by heat in human skin and that their degradation by various MMP, such as MMP-12, may contribute to the accumulation of elastotic material in photoaged skin.
Photoaging accounts for most age-related changes in skin appearance. It has been suggested that both astaxanthin, a potent antioxidant, and collagen hydrolysate can be used as antiaging modalities in photoaged skin. However, there is no clinical study using astaxanthin combined with collagen hydrolysate. We investigated the effects of using a combination of dietary astaxanthin and collagen hydrolysate supplementation on moderately photoaged skin in humans. A total of 44 healthy subjects were recruited and treated with astaxanthin (2 mg/day) combined with collagen hydrolysate (3 g/day) or placebos, which were identical in appearance and taste to the active supplementation for 12 weeks. The elasticity and hydration properties of facial skin were evaluated using noninvasive objective devices. In addition, we also evaluated the expression of procollagen type I, fibrillin-1, matrix metalloproteinase-1 (MMP-1) and -12, and ultraviolet (UV)-induced DNA damage in artificially UV-irradiated buttock skin before and after treatment. The supplement group showed significant improvements in skin elasticity and transepidermal water loss in photoaged facial skin after 12 weeks compared with the placebo group. In the supplement group, expression of procollagen type I mRNA increased and expression of MMP-1 and -12 mRNA decreased compared with those in the placebo group. In contrast, there was no significant difference in UV-induced DNA damage between groups. These results demonstrate that dietary astaxanthin combined with collagen hydrolysate can improve elasticity and barrier integrity in photoaged human facial skin, and such treatment is well tolerated.
The epidermis is a dynamic epithelium with constant renewal throughout life. Epidermal homeostasis depends on two types of proliferative cells, keratinocyte stem cells (KSCs), and transit amplifying (TA) cells. In the case of chronologic aging, levels of KSCs tend to decrease and change functionally. However, little is known about the effect of photoaging on epidermal proliferative subtype populations. The aim of this study was to validate involucrin/beta1-integrin ratio as a molecular marker of epidermal photoaging, and to investigate the effects of photoaging caused by chronic UV exposure on the proliferative subtype populations. A total of 15 male volunteers (age range 20-24 and 77-85 years, Fitzpatrick skin phototype III-IV) provided sun-exposed and sun-protected skin samples for real-time RT-PCR, Western blot analysis and immunostaining. Fractional changes in proliferative subtype populations in photoaged and chronologically aged skins were analyzed by flow cytometry. The expression of beta1-integrin was found to be significantly reduced in photoaged skin and ratios of the expressions of involucrin to beta1-integrin were increased 2.6-fold only in elderly subjects. Interestingly, immunostaining of the sun-exposed skins of elderly subjects showed aberrant beta1-integrin expression over the basal layer and greater numbers of Ki-67-positive cells than in sun-protected buttock skin. Flow cytometric analysis revealed that the proportion of KSCs to TA cells was reversed in sun-exposed and sun-protected skins of elderly subjects. Our results suggest that KSC numbers may be lower in photoaged skin than in chronologically aged skin and could be applied to hyperplastic pattern of photoaging. These findings suggest that the epidermis of photoaged skin is impaired in terms of its proliferative potential by attempting to repair chronic UV exposure and that photoaging may be associated with alteration in the two proliferative cell fractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.